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ABSTRACT 
 
Probabilistic calculation assumes randomness in events and processes, i.e., it assumes 
that all the observations in a probability distribution have the same possibility of 
occurrence. The only difference from one event to another is their respective 
frequency. 
  
To avoid the situation that a very low probability event drives the decision making 
process, there must be a criterion for the predicted dose as a function of probability to 
be considered acceptable by regulatory authorities. For example, it can be required 
that the predicted dose at 2 standard deviations above the mean value for dose to be 
no more than three times the regulatory standard.  
 
This paper proposes the use of possibility analysis, as a complement to the probability 
analysis. In this approach two separate performance analyses, probabilistic and 
possibilistic, are performed and the results are used to complement each other. A case 
example is provided to illustrate the methodology. 
 
  INTRODUCTION 
 
According to the 1989 International Atomic Energy Agency (IAEA) report, [1], the 
uncertainties can be classified as type A, aleatoric, and type B, epistemic. Aleatoric 
uncertainty is generated by occurrence of random and independent events, while 
epistemic uncertainty is generated by factors such as lack of data, ignorance and high 
complexity of the system.  
 
Probability theory is used to model aleatoric uncertainty. A number of methodologies 
exist to deal with the epistemic uncertainty and they are called non-probabilistic 
methods.  
 
The two types of uncertainty, aleatoric and epistemic, are sometimes mixed and 
modeled as probabilistic. This happens because the input distributions of data are also 
used to represent lack of understanding of some processes.  For example, in high-level 
waste performance assessment, the fuel dissolution rate or input data related to 
canister failure contain both types of uncertainty [2]. This made it very difficult to 
evaluate the impact of the epistemic uncertainty in the Total System Performance 
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Assessment (TSPA). This is even more evident in the cases where some conditions 
are characterized by linguistic expressions. 
  
Because TSPA is comprised of very complex studies where data with different 
formats have to be aggregated in the same framework, it is almost always practically 
impossible to distinguish, and treat, the uncertainties according to their different 
sources.  
The method presented in this paper addresses this difficult situation and consists of 
using possibility as a complement to the traditional probabilistic approach.   
 
MONOTONE MEASURE 
 
The monotone measure describes the assignment of an element, xi, to two or more 
crisp sets. Where a crisp set is a set with well defined boundaries, as opposed to a 
fuzzy set which is a set with flexible boundaries. Please refer to the literature for more 
information. [3, 4] 
 
Monotone measures are an umbrella theory that is comprised of some different forms 
theories such as, belief, plausibility, possibility, necessity, etc. A more complete study 
of all of them is beyond the scope of this text.  Additional information is available 
from [4]. 
 
In a universe U, an element, xi, is assigned to a crisp set, Qj, according to the available 
evidence. There is no uncertainty about the definition of the crisp set, but uncertainty 
exists about the evidence to establish an assignment of an element to the set.  This is 
not a random notion.. The evidence can be completely lacking – the case of total 
ignorance – or evidence can be complete – the case of probability assignment. [3] 
 
Example of assignment 
 
Figure 1 shows a schematic representation of assignment of elements to a crisp set. As 
an example, suppose that the set Q1 is a collection of all boxes that are colored with 
shades of green, and Q2 is a collection of shades of yellow.  
Then suppose that each element, Bi, is a box that is assigned to the crisp sets Q1 or Q2 
according to their color. 
 
Depending on the mechanism of analysis, it may be difficult to distinguish some 
colors from each other so each box is correctly assigned to the right crisp set. For 
example, the box B5 can have some shades of yellow mixed with green, so it has 
membership in Q1and Q2. 
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Figure 1: Schematic representation of elements to crisp sets in a universe U 
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This can be compared to a classification process where the elements are assigned to 
crisp set according to the available evidence. As the quality of evidence can change, 
the assignment of elements, or subsets, to the crisp set, Q, could be viewed as a fuzzy 
classification. This means that one ball, Bi, can belong to one or more crisp sets, Qi.  
 
In this example, as more information is made available, or a new mechanism is used 
for color identification, the composition of the sets Q1 and Q2 can change. 
Within this context, the fraction of elements that have degree of membership =1 to the 
set Q is called belief (Q), and the fraction of elements that have degrees of 
membership higher than 0 to the set Q is called plausibility, (Q) 
 

 
Possibility theory 
 
It can be shown that, under certain conditions, the belief and plausibility measures are 
defined as necessity and possibility. The reader is encouraged to find more 
explanations in the literature. [3], [4] 

 
A possibility distribution function π is a mapping of the singleton elements, x, in the 
universe, X, to the unit interval: 
 

)(max)( xrX
Ax∈

=π        Eq. (1) 

Where: 
]1,0[: →Xr         Eq. (2) 
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Because of the similarity of axioms of fuzzy logic to those of possibility theory, the 
possibility distributions can be represented as a membership function. [4, 5] 
    
Therefore the mathematical developments for propagation of fuzzy sets, fuzzy 
arithmetic and interval analysis, are applied for possibility distribution as well. 
 
It is in this context that fuzzy logic is used in this paper. 
 
Fuzzy Sets 
 
Fuzzy sets can be interpreted as being a collection of elements which respective 
degrees of membership represent the degrees of compatibility of the elements with the 
others members of that collection or class. The fuzzy set is mathematically 
represented by a membership function. A fuzzy set can then be viewed as a 
representation of a classification of the elements and their respective degrees of 
membership are assigned according to the support, or evidence, for the classification.      
 
In a calculation, if the input data are given in the form of fuzzy sets, then the result is 
also given in the form of a fuzzy set. This result, in the form of a fuzzy set, can then 
be viewed as a classification of the several results, Rn, to a class,  (fuzzy result). R

~

Similar to the Monte Carlo method, a fuzzy set can be viewed as a collection of 
results of realizations, each one with a specific combination of parameters that will 
provide support for the assignment of degrees of membership to a set of results. 
 
In other words, a fuzzy result  is a picture of the system under analysis showing its 

compatibility to a collection of possible results.  

R
~

 
A fuzzy set, , is represented as a vector as follows: A
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Where: 
µ = degree of membership  
 
xi = element of the set with n elements. 
 
Probability measure 
 
In a probability measure all the elements are assumed to have complete membership 
to the set Qi. There is no doubt about the evidence to the assignment, i.e., their 
membership can be described as a binary relation, zero or one. 
 
If the assignment is thought of as a membership function, then only the elements with 
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degree of membership =1 can be described probabilistically. This concept is shown in 
Figure 2.  The top figure shows the degree of membership of all values x to a set.  The 
bottom of figure 2 shows the frequency (probability distribution function) of the 
values of x in the set.  Note, frequency is not defined when the membership is less 
than 1.   
 

 
Figure 2: Elements defined probabilistically have the same degree of membership to a crisp set Qi. 
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Having a degree of membership of 1 in the set leads to the law of the excluded 
middle. From this law, if one knows the probability of A, P (A), then the complement 
of the probability of A is also known:  
 

)(1)( APAP −=                    Eq. (3) 
  
In the case of a possibility distribution, the elements can have different degrees of 
membership and, therefore, can have membership to different sets. 
 
POSSIBILITY VERSUS PROBABILITY DISTRIBUTIONS 
 
As mentioned above, a probability measure assumes that all the elements have 
complete evidence in their assignment to a crisp set, Qi.   Then, if in a collection of 
elements, xi ….xn, with various degrees of evidence, only those elements, xk…..xm, 
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which have complete evidence, will be described probabilistically.   
 
In TSPA, due to lack of enough data, the probability distribution functions are often 
based on expert’s judgment. In other words, experts use the collection of discrete 
points and extend it to a continuous distribution. The new values thus created do not 
necessarily have the same degree of support (i.e. membership less than 1), which 
means that the assignment of an element, xi, to a crisp set Qi, may not be based on 
complete evidence. Consequently the probability distribution functions may not be 
based on the assumption of full membership.  
 
Here is where the application of possibility theory would be useful as a complement 
to the probability approach to TSPA. It may happen that the elements of the 
probability distribution function have different degrees of compatibility with the set 
being analyzed. The degree of compatibility of an element could be used as a 
complement to its probability.  
 
As it will be shown in the next section, soil samples are assigned to a class of Kd 
values (e.g. Low, Medium, High) according to each sample composition. 
 
The analyzed samples are used as a basis for a fuzzy classification [7]. In the 
example, the samples are classified according to their features, or composition. As 
each sample has a specific Kd value, these values will be classified following the same 
membership function, in the same classes. 
 
Within a class, the degrees of membership of each element are also a measure of their 
respective degrees of compatibility with that class. When new data are available, it is 
possible to calculate its degree of membership to the already built classes. This 
process is called pattern recognition.  
   
Through this process a membership for the data is calculated, which is translated into 
degree of compatibility. This process takes into account the characteristics, or 
features, of the sample, and not just the frequency of occurrence. Therefore, the 
probability distribution function can show different results from a membership 
function. 
 
A CASE EXAMPLE: Kd VALUES AS POSSIBILITY DISTRIBUTION  
 
For a certain radionuclide, the distribution coefficient, Kd, depends on the soil 
features. In analogy to the example of colored boxes, where the color of each is the 
evidence for its assignment to a set; we can consider the soil characteristics as the 
evidence to assign a certain sample to a set, or class, of Kd values.  This class of Kd 
values can be defined, for example, as Low, Medium and high Kd’s. 
 
Because of the complexity of factors that influence the distribution coefficient, this 
assignment is not a straightforward task. Also, even though the laboratories 
measurements are precise, laboratory conditions are different from field conditions 
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and, therefore, the actual values of Kd, for a certain region, can only be roughly 
evaluated.  
 
In other words, having a universe of possible Kd values, there is not complete 
evidence for the assignment of a soil sample to a class of Kd value, or more 
importantly for TSPA, to a deterministic value. In this example, the evidence is based 
on soil composition, for example, the percentage of clay, sand, organic material and 
silt.   
 
Following the nomenclature provided by evidence theory, in this case example we 
consider soil samples as the elements, Bi, to be assigned to a crisp set; and the single 
Kd value as the crisp set Q. Each element (soil sample) can have membership to one 
or more crisp sets,  
  
As mentioned before, the process of assignment can be compared to a fuzzy 
classification which will generate a membership function that defines the degree of 
membership, or compatibility, of individual elements to a class. The definition of a 
class can be done in reference to a specific Kd value as shown in Table 1.  

 
Table 1: Kd values as center of a class 

Kd Class 
0 Low 

200 Medium 
1000 High 

 
In the following example, soil samples are classified according to their degree of 
compatibility to the Kd value 200, or “Medium Kd”. 
  
Another explanation is that the degree of support for the assignment of a soil sample 
to a particular value of Kd can be viewed as the degree of compatibility of that soil 
sample to that particular Kd.  Geochemical conditions have a strong spatial and 
temporal variability, and the use of a deterministic value (e.g., geometric mean) in 
TSPA, or even a probabilistic distribution may not capture the actual situation. By 
using this methodology each sample will have different degrees of assignment to a 
class of values and the region can be defined by a membership function, or a fuzzy 
number.  For example, membership functions could be developed based on soil 
properties to suggest the Kd class that is most compatible with the soil properties.   
 
This methodology is not meant to be a substitute to a probabilistic representation of 
the data. The probabilistic distribution assumes that all points have the same degree of 
membership to a class, or µ =1. However due to several reasons this is not always 
true. Then the representation of the data also in terms of a fuzzy set can have an 
important impact on the confidence one can pose in the TSPA results. 
 
As a practical example, let’s take the case presented in [7]. Data from 25 soil samples 
were collected from the literature and classified according to their respective 
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composition, i.e., percentage of clay, sand, organic and silt. Each sample is also 
associated with a Kd Value which was determined through laboratory tests. Therefore, 
the classification of a sample, according to its composition, was also was a measure of 
the compatibility of each sample’s Kd value, to a particular value. 
 
Table 2 shows the composition of the elements (samples) of one of the classes. The 
compositions of the samples were used for the fuzzy classification. [3]. As each 
sample corresponds to a specific Kd, the result, shown in the Figure 3, is given in 
terms of a membership function of Kd values.  
 

Table 2: Samples used for building the regression equations * 
Sample (n) Sand (%) Silt (%) Clay (%) Organic (%) Kd (ml/g) 
0 74 3 23 0 405 
4 100 0 0 .03 119 
6 96 4 0 .51 74 
11 95 2 2 .3 510 
* Adapted from [7]  
 
 

 
Figure 3: Membership distribution function of Kd values. Adapted from [7] 

 
 
The degrees of membership of the Kd s can be viewed as degrees of compatibility of 
that value with the region from where the samples were taken.  This is different 
information than a probabilistic distribution, or even a deterministic value. 
    
One advantage of this methodology is for analysis of regions where we do not have 
data but may have other information that suggests certain values are compatible or not 
compatible with this information (i.e. soil type for Kd).   
 
Experts could build a probability distribution function based on their experience. This 
methodology may improve over an expert redefining the Probability Distribution 
Function (PDF) to account for these soil types.  
 
In this sense the two approaches, probabilistic and possibilistic, can be 
complementary. In a probabilistic approach, all the elements have the same likelihood 
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to occur, therefore they should have the same degree of possibility, or membership    
µ = 1. 
 
However, traditionally, due to lack of data, experts build the PDF’s based on their 
professional experience. Therefore, the concept in Figure 2 may not apply to this case. 
In this case the possibilistic distribution could be used as a complement to the PDF, 
acting as a measure of the “reasonable assurance” that the element under 
consideration has a high degree of compatibility with the situation it represents.  
 
In other words, if a high probability event has a low degree of membership, or a very 
low probability event has a high compatibility, then further studies should be carried 
out in order to clarify the results.    An ideal situation for building confidence in 
model predictions would be a match between probability and compatibility. For 
example, in the example, a Kd = 499 has a very low degree of membership to the set, 
“Low kd” in Table 1, therefore, it should also have a very low probability of 
occurrence.  
 
CONCLUSIONS 
 
The probabilistic approach assumes independent and random events, which means the 
events are equally possible to occur. However, this is not always the case for 
empirical data. Traditionally, because of lack of adequate information, experts build 
the probabilistic distribution functions based on their professional experiences. 
 
In other words, there is no complete evidence for characterization of data and their 
assignment to a class. Consequently, the data may not be interpreted correctly. i.e., a 
high probable event may have a low degree of possibility, or vice versa. 
 
This paper suggests that the possibility analysis be used as a complement to 
probabilistic analysis. The degree of membership can be interpreted as a degree of 
compatibility, or assurance, of a particular data to the situation being studied. In this 
sense, a reasonable degree of compatibility, or membership, could be interpreted as 
reasonable assurance that the results are being correctly interpreted. 
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