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ABSTRACT 
Delineation of the location and size of the population potentially at risk of exposure to 
ionizing radiation is one of the key analytical challenges in estimating accurately the 
severity of the potential health effects associated with a radiological terrorism incident. 
Regardless of spatial scale, the geographical units for which population data commonly 
are collected rarely coincide with the geographical scale necessary for effective incident 
management and medical response. This paper identifies major government and 
commercial open sources of U.S. population data and presents a GIS-based approach for 
allocating publicly available population data, including age distributions, to geographical 
units appropriate for planning and implementing incident management and medical 
response strategies.  

INTRODUCTION 
Predicting the likely severity of a terrorism event in terms of its impact on human health, 
especially the number and type of fatalities and injuries likely to occur, is one of the key 
challenges in designing and implementing measures to prevent or minimize adverse 
consequences [1]. Moreover, because clinical manifestations of psychological effects also 
may occur subsequent to an incident [2-4], this also can aid in identifying target areas for 
developing effective post-event mental health interventions. This is particularly important 
in order to gauge the possible health impact of non-conventional terrorism incidents, 
especially the intentional release of biological pathogens or low doses of ionizing 
radiation by a low-yield nuclear device or a radiation dispersion device (RDD) commonly 
called a dirty bomb. In part, this is due to the time lag that typically occurs between the 
actual release and the onset of physiological symptoms unlike events involving 
explosives where the physical effects of blunt trauma are readily apparent or chemical 
attacks in which evidence of exposure in the form of fatalities and/or individuals 
presenting clinically for treatment tends to be fairly rapid [5-7]. And, although this 
problem is lessened with chemical exposures because effects are likely to manifest 
instantaneously or within a few hours, it clearly is problematic with suspected biological 
events where clinical presentation of effects can be delayed for days or even weeks.   

With exposure to radiation, clinical manifestations of physiological effects are contingent 
on the absorbed dose of radiation. For many of the victims, the dose will be below the 
threshold for acute radiation syndrome (ARS) – also commonly referred to as radiation 
sickness – of whole-body or significant partial-body irradiation > 1 Gy delivered at a 
relatively high dose rate but still produce exposure to ionizing radiation. With respect to 
nuclear terrorism, the detonation of low-yield nuclear weapons (≤ 20KT), a matter of 
increasing concern because of the global risk of terrorism, could produce expose to low-
doses of ionizing radiation raising the possibility of developing cancer with its 
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corresponding physiological and psychological effects.  Because clinical manifestations 
are contingent on the absorbed dose of radiation, this may prove to be the determining 
factor in selecting appropriate medical responses to low-doses of ionizing radiation [8-
11]. The degree of difficulty is further exacerbated with radiological events involving low 
levels of ionizing radiation typical of ‘dirty bomb’ scenarios [12]. Additionally, various 
tissues differ as to their response to ionizing radiation underscoring the importance of 
establishing measurable endpoints linked to dose. As a result, making extrapolations to 
dose and biological effects based on studies of high-dose populations such as the 1945 
Hiroshima and Nagasaki atomic bomb survivors is a difficult and complex process as 
demonstrated by the ongoing series of Biological Effects of Ionizing Radiation (BEIR) 
reports prepared by the National Academy of Sciences [13-14]. Such lags between 
exposure and biological effects, especially with low-dose ionizing radiation associated 
with the detonation of a RDD, underscore the importance of being able to delineate well 
the population to monitor prior to the onset of physiological effects. As a result, 
accomplishing this objective will support effective triage and medical management of 
casualties based on rapid, non-invasive estimation of radiation exposure [15-19]. 

Because severity expressed as mortality and morbidity partially is contingent on the pool 
of potential targets, accurate population data – including age distributions given the 
unique vulnerabilities of infants and the elderly – are essential for analysis designed to 
support decision-making since the number of adverse outcomes for those types of events 
is a function of the number of people exposed [20]. Such information, when coupled with 
dose and exposure estimates, provides the underlying basis for developing risk-based 
response measures. Consequently, access to good data about the size and spatial 
distribution of the potential population at risk to exposure is critical. Unfortunately, real 
world data on the distribution of populations over time and across space are often very 
fragmentary, incomplete, outdated, or entirely lacking. Delineating the size and spatial 
distribution of populations potentially at risk also is made complex because, during the 
course of a given day, people move from place to place as well as from indoors to 
outdoors. These factors make it difficult to relate population distributions to specific 
locations on a temporal-spatial basis. As a result, delineating the number of people 
potentially at risk (i.e., population) due to a terrorist attack involving non-conventional 
weapons can be difficult. This forces analysts and decision makers to rely on estimates of 
population distributions.  This paper presents a GIS-based approach for addressing the 
problem of allocating readily available, open source population data to geographical units 
appropriate for planning and implementing incident management and medical response 
strategies. 

APPROACH 

Generating credible estimates of the number of people and their spatial distribution across 
geographical boundaries relevant to a non-conventional terrorism event such as the 
detonation of a RDD requires analysts to solve two interrelated problems. First, 
population counts arrayed on a defined spatial basis such as census blocks or zip codes 
need to be available. Second, a defensible basis for reliably updating those counts and 
allocating them spatially to relevant geographical units that are defined by the dynamics 
of the event has to be used. In essence, one faces the task of interpolating data often 
collected at one level of resolution as well as a single point in time to either the same or 
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different spatial scales in order to match the area affected by the event (see Figure 1). 
Geographical information systems (GIS) coupled with computational algorithms provide 
a convenient approach for addressing these problems. The following sections summarize 
the elements of a GIS-based approach for using open source population data to estimate 
the size and location of populations potentially exposed to ionizing radiation released by 
RDDs during terrorism incidents. 

 
Figure 1. Schematic of the Process for Spatial Interpolation of Population Data 

Open Source Data for Estimating Populations at Risk  
A wide array of open source data for the U.S. civilian population are available from 
government or commercial providers (see Table 1). However, those data typically are not 
collected specifically to support exposure estimation and risk assessment. Instead, various 
computational algorithms have to be applied to those data to derive population estimates 
which are allocated on a daytime versus night-time basis to specific geographical units 
relevant to planning and implementing incident management and medical response 
strategies [21-24]. As a result, the quality of estimates of populations at risk is contingent 
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on the comprehensiveness, frequency of collection, time frame (daytime vs. night-time), 
and spatial scale (aggregate geographic units with discrete boundaries) of the underlying 
dataset used to identify populations of interest [25].  

Table 1. Major Government and Commercial Open Sources of U.S. Population Data 

 
Data Source Comprehensiveness Frequency  Time Frame 

(Day/Night) 
Spatial  
Scale 

U.S. Decennial 
Census 

Complete count of 
US population by 
households 

Once every 10 
years 

Night-time Block (Block 
group level for 
much of the 
demographic 
information) 

American 
Community 
Survey 

Sample estimate of  
population 
characteristics for 
geographic areas 
with populations ≥ 
65,000 by U.S. 
Census Bureau 

Annually 
starting in 
2010 
(tracts every 3 
years; block 
groups every 5 
years) 

Night-time County 
subdivisions  

Longitudinal 
Employer-
Household 
Dynamics 
Program 

Limited to 25 
states; combines 
state administrative 
data with survey 
data from U.S. 
Census Bureau  

Quarterly Daytime Varies from 
county down to 
WIA 

Census 
Transportation 
Planning 
Package 

Place of work and 
residence; worker-
flows by county 

Once every 10 
years 

Daytime Varies from 
traffic analysis 
zone (Parts 1 & 
2) to block group 
(Part 3) 

infoUSA 210 million US 
consumers and 14 
million US 
businesses 

Monthly daytime Zip code plus 4 
(< zip code) 

 

Each of the major sources of readily available data has limitations, especially in terms of 
trading off high spatial resolution for high temporal accuracy. Moreover, each provides 
either daytime or night-time counts so computational techniques have to be employed to 
derive data for both timeframes. For example, although the current version of the 
decennial census is the most comprehensive, it is only conducted once every 10 years and 
reflects residence not place of work aggregated within political jurisdictions to various 
levels of spatial resolution. Currently, the decennial census has the highest level of spatial 
resolution for open source demographic data (i.e., block). Using a combination of the 
“short form” questionnaire completed by five out of every six households in the U.S. and 
the “long form” questionnaire completed by the remaining one of six households, the 
decennial census provides a “100% count” of the U.S. population (i.e., enumeration). The 
long form, unlike the short form, is based on statistical sampling and provides additional 
demographic information that can be used to characterize population attributes such as 
income, housing tenure, employment, transportation to work, education, and migration 
patterns.   
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Figure 2 illustrates the spatial relationships between the geographical entities. The block 
level is the smallest spatial scale for which population characteristics are available and is 
the scale at which short form data are collected. Blocks do not have a constant area (i.e., 
non-uniform polygons), and their size depends on the population count within the block.  
The number of households is not fixed either and is partially dependent on the ease of 
data collection.  For example, households may be clustered within a block (i.e., 
apartments, condos, subdivisions with small lots) so that blocks containing clusters of 
households normally have more households than blocks containing dispersed households 
(i.e., homes with acreage, rural land).  Information typically available for census blocks 
includes population count, sex, age, race, Hispanic/Latino/Spanish origin, family 
structure, and home ownership. Block group is the next smallest spatial scale.  Block 
groups are comprised of multiple blocks, and block boundaries are never split by block 
groups.  This is the smallest spatial scale for long form (sampled) population data.  All 
data collected by block are available at the block group level.  Data can be aggregated to 
lower resolution scales including zip codes, census tracts, and counties.  

 

 
Source: [26] 

Figure 2. Spatial Relationships among Census Bureau Geographical Entities 

While the American Community Survey (ACS) is similarly comprehensive for urban 
areas, like the decennial census, it also fails to capture population data on a daytime basis. 
It too has a high level of spatial resolution which enhances the accuracy of population 
estimates, but data currently are not reported geographically at the block group or tract 
level for participating political units (see Figure 3). Instead, demographic data are 
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reported at the county sub-division level (i.e., MSD) or larger spatial scale. The ACS is 
intended to replace the Census long form in 2010. It uses a stratified sampling 
methodology to more accurately estimate population characteristics between decennial 
censuses at various temporal and geographic scales. Initially, a stratified sampling 
methodology is used to select 20% of households within census blocks without the 
possibility of reselection for 5 years.  Household selection is stratified by the estimated 
variance of the occupied housing units within census blocks (or some other small 
geographic entity of interest) and census tracts by county.  Estimates are based on 
information obtained from the most recent decennial census. After the initial selection of 
households to be sampled, a 3-month sample collection period within a one year period is 
randomly assigned to each household: survey forms are mailed in month 1; telephone 
interviews begin in month 2 if there is no response to the mailed survey, in-person 
interviews are attempted in month 3 if there is no response to telephone interviews.  A 
small number of households are randomly selected for in-person interviews, stratified by 
the participation of mailed interviews. Beginning in 2006, the ACS included a stratified 
sample of group quarters which makes possible characterization of populations living in 
nursing homes, college dormitories, correctional facilities, shelters, and other group 
settings.  Group quarter selection is stratified by size at the state rather than county level 
and group quarters that participate in the survey are eligible for re-selection every year. 

 
Source: [27] 

Figure 3. ACS Spatial Scale Relationships 

Other Census Bureau products such as the Longitudinal Employer-Household Dyamics 
and the Census Transportation Package that do capture daytime data are far less 
comprehensive in terms of geographic coverage. Moreover, in their current form, their 
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spatial resolution tends to be lower than the decennial census and the ACS. In the future, 
coverage may be at a higher level of spatial resolution than the individual census block or 
tract making it possible to capture population data for specific buildings but 
confidentiality considerations may limit access to such high resolution data. However, 
because a deliberate release of radioactive material is likely to have a spatial scale that 
encompasses an area exceeding and/or cutting across census blocks or tracts such 
precision may be unnecessary for estimating the size of populations at risk to exposure to 
low-dose radiation from an RDD event [12].  

InfoUSA illustrates the kind of open source population data available for purchase from 
commercial vendors as proprietary databases. InfoUSA, for example, compiles private 
and public databases from telephone directories, the US Census Bureau, US Postal 
Service, the Securities and Exchange Commission, and sources such as utility hook-ups 
and business registries to provide consumer and business contact information for 
marketing purposes [28]. Those marketing databases may be adaptable for determining 
current population counts to support estimating the size and spatial distribution of 
populations which may be exposed. Key demographic information relevant to incident 
management and medical response strategies includes location (zip code, radius, city, 
metro area, area code, and state), household income, gender, age, housing type, and the 
presence of children and/or seniors. The highest spatial resolution of consumer 
information is the zip code scale. Although data are temporally accurate for a specific 
month, because they are proprietary databases, the cost of acquisition may be prohibitive 
in some cases especially to maintain up-to-date records when an area is undergoing rapid 
changes in population. 

Gravity Models for Spatial Interpolation of Population Distributions  
Once the initial data source is selected, those data can be manipulated to calculate shifts 
in daytime versus night-time population counts and densities linked to specific 
geographic areas of interest. This can be done mathematically by using a gravity model 
of migration [29-31]. As the name implies, this model is analogous to Newton’s law of 
gravitation in the sense that it predicts the degree of interaction between two locations as 
a function of spatial separation. Variants of the model have been used by social scientists 
for more than a century to characterize the movement of people, information, and 
commodities between two places [32-37]. Model calibration is accomplished empirically 
by adjusting parameter values (constant and exponents) to insure that the estimated 
results, when compared to actual observations, are similar to observed flows. 

Gravity models empirically define the relationships between an origin (i.e., location of 
worker residences) and destinations (i.e., centers of employment). In essence, when 
applied to human interactions, the gravity model postulates that flows of people between 
geographical areas are directly proportional to the relative attractiveness of each area and 
are inversely proportional to some function of the spatial separation between them.  
Mathematically, in order to reflect this assumption, the gravity model is stated as follows 
in its most simple formulation:  

ij

ji
ij d

PP
M =       (Eq. 1) 
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Where: 

Mij = flow between the two areas i and j respectively 

Pi and Pj = values of parameter for areas i and j respectively 

dij = distance between areas i and j respectively  

Thus, spatial interactions between locations i and j are proportional to their respective 
importance divided by their distance. The values for P are assumed to be influenced by 
the relative “attractiveness” and “accessibility” of each area [38]. Attractiveness is a 
measure of the destination location’s appeal relative to other locations. Accessibility is an 
index weighted by a combination of each area’s attractiveness and a measure of distance 
from the origin (centroid) between each area. While static in the model, the values of the 
parameters are likely to change over extended periods of time. Traditionally, it is 
assumed that the further apart the two areas are the less movement between them is 
assumed to occur due to the phenomenon of distance decay. The effect of distance, 
however, is not really uniform (i.e., monotonic inverse relationship) but rather one in 
which distance is raised to some power other than unity [39].  For example, a constant 
exponent cannot yield reasonable results unless the range between the longest and the 
shortest distances between all pairs of areas is small. As a result, one of the underlying 
problems in determining values for the exponent is the variation in the measure used to 
express distance.  This makes it necessary to apply a distance-decay function and a 
friction coefficient to scale the response to be consistent with measures of long or short 
distances [29, 38-41]. And, constraining both the origins and destinations (i.e., double 
constraint) ensures that the total flows estimated by the model equate the total flows 
observed for each area.  

The general formulation of the model summarized above normally has to be extended by 
summing the count for all pairs of origins and destinations within the geographical area 
of interest to derive separate estimates for daytime and/or night-time that can be used to 
allocate populations. Doing this provides a technique for distributing population counts or 
densities based on daytime and night-time shifts between residences and places of work. 
The result is typically a matrix that provides population data for each origin-destination 
pair that can be displayed in a GIS environment. When matched to spatially distributed 
estimates of total dose equivalents, it becomes possible to calculate a first approximation 
of the potential severity of an intentional release of radioactive material during a RDD 
event.   

DISCUSSSION AND IMPLICATIONS 
The gravity model offers a straight-forward, empirical tool for estimating population 
flows, especially when geographical areas are relatively well-defined in terms of 
accessibility and spatial separation. This is particularly important for several reasons. 
First, the spatial scale for the area impacted by a RDD terrorism event is unlikely to 
match fully the spatial scale of available population data. That is, the plume spread 
typically will not uniformly overlay the impacted area. Second, the number of people 
within the impacted area varies as a function whether an attack occurs during the day or 
night. For example, the population of a central business district or industrial area 
typically is larger during the day while predominately residential areas have larger night-
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time populations.  As a result, interpolation techniques that link population data to 
geographical units and allocate those data based on timeframe at a spatial scale that is 
relevant to enhancing preparedness and response.  

The gravity model’s main advantage is that it efficiently allocates readily available, open 
source population data to geographical units appropriate for planning and implementing 
incident management and medical monitoring strategies. The importance of being able to 
link population estimates to geographic areas during the course of an RDD incident can 
be understood intuitively: 

• The spatial distribution of actual total dose equivalents of ionizing 
radiation is likely to vary due to changes in meteorological parameters as 
an event evolves over time  

• The size of the geographical area affected also is likely to vary as a 
function of the actual release scenario 

• The ability to identify the location and size of the populations that may be 
exposed to doses of ionizing radiation is critical to carrying out 
appropriate treatment and post-event medical monitoring 

• Once a spatial interaction model has been validated for a city or a region, 
it can then be used for simulation and prediction purposes to assess the 
possible human health consequences of different release scenarios  
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