A View of Fuel Recycling

February 26, 2008

Dr. Raul A. Deju President Energy*Solutions* Inc.

- Enabling nuclear power to expand
- Addressing the waste confidence issue
- Reducing the amount and radio toxicity of HLW requiring disposal
- Utilizing more of the energy in nuclear fuel
- Security of energy supply for the US
- Enabling carbon emissions to be reduced near term
- Changing economic conditions

MacArthur River

Allows nuclear option to expand

and reduces carbon emissions

NERGY

Disposal – No outstanding technical issues
Increased confidence in waste disposal

Utilize salt deposits close to WIPP

 Changing Economic Environment Rising uranium prices

Reduces Radio toxicity

Leverages mature technology

Defers need for disposition

Burns toxic actinides Ultimately no orphan wastes

Status of Deploying the Recycling Technology

- Commercially proven technology
- The technology is proliferation resistant and pure plutonium is never separated nor produced
- Facility design is available
- Recycling used LWR fuel makes economic sense now and reduces HLW volumes substantially
- The necessity of HLW disposal can be delayed
- Focused technology development for ARR fuel recycling should enable commercial deployment in 35-40 years

Non Proliferation

- Attractive fuel service package from US & other supplier nations would preclude the need for recycling in other nations
- No separation of pure plutonium
- Designs can prevent access or diversion
- Real time process & facility surveillance by IAEA
- No protracted storage or accumulation of 'fissionable' material
- A focus of fuel recycling capability and skills in stable economies and geographies

Economics

- Nuclear Energy is a mature technology
- Competitive with other electricity generation sources

Economics (continued)

- Recycling LWR fuel is commercially viable now
- The first facility can be on line in 15 years
- Public-private partnership, no large appropriations
- Requires legislative & regulatory changes
- Can be funded via waste fees and fuel revenue
- Leverage international investment
- Single regulatory body

Fast vs. Thermal

- Advantages of fast and breeder reactors
 - ²³⁸U converted to fissile material
 - ²³⁸U in enrichment fuels can be used as a blanket breeder
 - Up to 50 times more energy than a once through thermal
 - Effective spectrum for burning actinides
 - Demonstrated at scale
 - Decouple from fresh U supplies

Fast versus Thermal

- The expansion of nuclear power needs LWR recycling now and ultimately fast reactor recycling
- Economics is the key, waste management drives the economics
- LWR recycling is ready for commercial deployment
- Fast Reactor (FR) technology is well understood but still requires development
- Fast Reactor is not yet ready for commercial deployment
- LWR recycling of U & MOX will continue into the next century using aqueous processes
- Full potential of fast reactors as breeders will not be realized until the second half of this century

Government vs. Industry Public Acceptance Role

- Play to strengths
 - Government long term high risk technical uncertainties
 - Government legislative and regulatory change
 - Industry shorter term lower risk
- Public Acceptance
 - Close to waste issue
 - Reduce proliferation risk
 - Improves security of energy
 - Paid for by commercial sector
 - Reduces CO₂ emissions
 - Creates jobs

Nuclear Fuel Recycling Center Advanced Technology ready to deploy

