A View of Fuel Recycling

February 26, 2008

Dr. Raul A. Deju
President
EnergySolutions Inc.

Drivers

- Enabling nuclear power to expand
- Addressing the waste confidence issue
- Reducing the amount and radio toxicity of HLW requiring disposal
- Utilizing more of the energy in nuclear fuel
- Security of energy supply for the US
- Enabling carbon emissions to be reduced near term
- Changing economic conditions

Drivers:

- Allows nuclear option to expand

Reduces reliance on fresh uranium

MacArthur River

Drivers:

- Disposal - No outstanding technical issues Increased confidence in waste disposal

Utilize salt deposits close to WIPP

Drivers:

- Changing Economic Environment Rising uranium prices

Uranium Price

Drivers:

- Reduces Radio toxicity

Leverages mature technology

Burns toxic actinides Ultimately no orphan wastes

Status of Deploying the Recycling Technology

- Commercially proven technology
- The technology is proliferation resistant and pure plutonium is never separated nor produced
- Facility design is available
- Recycling used LWR fuel makes economic sense now and reduces HLW volumes substantially
- The necessity of HLW disposal can be delayed
- Focused technology development for ARR fuel recycling should enable commercial deployment in 35-40 years

Non Proliferation

- Attractive fuel service package from US \& other supplier nations would preclude the need for recycling in other nations
- No separation of pure plutonium
- Designs can prevent access or diversion
- Real time process \& facility surveillance by IAEA
- No protracted storage or accumulation of 'fissionable' material
- A focus of fuel recycling capability and skills in stable economies and geographies

Economics

- Nuclear Energy is a mature technology
- Competitive with other electricity generation sources

Economics (continued)

- Recycling LWR fuel is commercially viable now
- The first facility can be on line in 15 years
- Public-private partnership, no large appropriations
- Requires legislative \& regulatory changes
- Can be funded via waste fees and fuel revenue
- Leverage international investment
- Single regulatory body

Fast vs. Thermal

- Advantages of fast and breeder reactors
- ${ }^{238} \mathrm{U}$ converted to fissile material
- ${ }^{238} \mathrm{U}$ in enrichment fuels can be used as a blanket breeder
- Up to 50 times more energy than a once through thermal
- Effective spectrum for burning actinides
- Demonstrated at scale
- Decouple from fresh U supplies

Fast versus Thermal

- The expansion of nuclear power needs LWR recycling now and ultimately fast reactor recycling
- Economics is the key, waste management drives the economics
- LWR recycling is ready for commercial deployment
- Fast Reactor (FR) technology is well understood but still requires development
- Fast Reactor is not yet ready for commercial deployment
- LWR recycling of $U \&$ MOX will continue into the next century using aqueous processes
- Full potential of fast reactors as breeders will not be realized until the second half of this century

Government vs. Industry Public Acceptance Role

- Play to strengths
- Government - long term - high risk - technical uncertainties
- Government legislative and regulatory change
- Industry - shorter term - lower risk
- Public Acceptance
- Close to waste issue
- Reduce proliferation risk
- Improves security of energy
- Paid for by commercial sector
- Reduces CO_{2} emissions
- Creates jobs

Nuclear Fuel Recycling Center
 ENERGY Advanced Technology ready to deploy

