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ABSTRACT  
 
Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada 
Test Site have used three different mathematical models to estimate Rn-222 flux density.  This 
study describes the performance, uncertainty, and sensitivity of the three models which include 
the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two 
numerical methods.  The uncertainty of each model was determined by Monte Carlo simulation 
using Latin hypercube sampling.  The global sensitivity was investigated using Morris’ one-at-a-
time screening method, sample-based correlation and regression methods, the variance-based 
extended Fourier amplitude sensitivity test, and Sobol’s sensitivity indices.  The models were 
found to produce similar estimates of the mean and median flux density, but to have different 
uncertainties and sensitivities.  When the Rn-222 effective diffusion coefficient was estimated 
using five different published predictive models, the radon flux density models were found to be 
most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, 
and the radionuclide inventory.  Using a site-specific measured effective diffusion coefficient 
significantly reduced the output uncertainty.  When a site-specific effective-diffusion coefficient 
was used, the models were most sensitive to the emanation coefficient and the radionuclide 
inventory.       
 
INTRODUCTION 
 
Mathematical models are widely used to assess the long-term safety of radioactive waste 
disposal sites.  Model results can have considerable uncertainty resulting from a lack of 
knowledge about what transport processes are important, the correct mathematical description of 
the transport processes, model input parameters, and the future state of the waste-disposal 
system.  Uncertainty analysis provides decision makers with an understanding of the probability 
of decision errors.  When the probability of decision errors is unacceptable, sensitivity analysis 
can identify the input parameters having the greatest impact on model output uncertainty.  
Further investigation of sensitive parameters may support a reduction in input parameter 
uncertainty, leading to a reduction in model output uncertainty.  Sensitivity analysis can also 
identify unimportant model components and parameters that may allow model simplification.  
Uncertainty and sensitivity analyses are essential tools when mathematical models are used to 
guide decisions regarding management of radioactive waste disposal systems. 
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The radioactive decay of Ra-226 and its parents in low-level waste leads to the emission of 
gaseous Rn-222 and its progeny to the atmosphere, where exposure of the public may be a 
concern.  Most regulatory agencies protect the public by limiting the Rn-222 flux density to 0.74 
Bq m-2 s-1 over the surface of disposal units containing uranium ore residues [1, 2, 3].  Operators 
of disposal facilities typically control emissions by installing a low permeability cover, allowing 
radioactive decay of short-lived Rn-222 (t½ = 3.8 d) to occur in the cover before reaching the 
atmosphere.  The Rn-222 flux is reduced by selecting an appropriate cover thickness based on 
the gas permeability of the selected cover materials.  This paper describes the results, 
uncertainty, and sensitivity of three alternative Rn-222 flux density models used in performance 
assessment at the Nevada Test Site (NTS). 
 
MATERIALS AND METHODS 
 
According to Fick’s law of gaseous diffusion, the gas flux density is equal to the product of a 
proportionality constant known as the diffusion coefficient and the concentration gradient.  In a 
porous medium, the diffusion coefficient must be adjusted to account for the reduced area 
available for diffusion and the longer path length in the air-filled pore space.  Unfortunately there 
is no consistent way to write Fick’s law for porous media.  One common form is: 

ae CDJ ∇−= φ       (Eq. 1) 
where J is the flux per total area of medium (Bq m-2 porous medium s-1), De is the effective 
diffusion coefficient in the porous medium (m2 porous medium s-1), φ is the total porosity (m3 air 
m-3 porous medium), ∇ is the gradient operator (m-1 porous medium), and Ca is the Rn-222 
concentration in the air-filled pore space (Bq m-3 air).   
 
Radon-222 Flux Density Models 
 
Starting with similar conceptual models, performance assessment modelers at the NTS have 
implemented three different mathematical models to estimate Rn-222 flux density.  The first 
method is a widely used model developed by the U.S. Nuclear Regulatory Commission (NRC) 
for uranium mill tailings in Regulatory Guide 3.64 [4, 5].  The NTS implementation (denoted as 
NRC model) uses equation 12 in NRC Regulatory Guide 3.64, an analytical solution to a steady 
state one dimensional multiphase radon transport equation.  The only difference between the 
NRC model the Regulatory Guide 3.64 model is that the Ra-226 activity concentration in waste is 
calculated as a function of time based on the initial concentration of U-234, Th-230, and Ra-226 
in the former.   
 
The other two models use numerical methods to obtain a transient solution to a series of coupled 
differential equations that are mass balance expressions for the multiphase transport of radon and 
its parents.  The conceptual model of radionuclide transport at the Area 5 Radioactive Waste 
Management Site (RWMS) on the NTS assumes that there is no groundwater pathway and that 
all transport processes move radionuclides upwards to the ground surface.  The most important 
difference between the numerical methods and the NRC model is that the former include upward 
transport processes for Rn-222 parents.  The first numerical model was developed for a Title 40, 
Code of Federal Regulations, Part 191, performance assessment for transuranic wastes in Greater 
Confinement Disposal (GCD) Boreholes and is described as the GCD model throughout [6].  The 
second numerical model was implemented in the probabilistic simulation software GoldSim® for 
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low-level waste performance assessment and is referred to as the GoldSim® model [7].  The GCD 
model and the NRC model were implemented in Microsoft® Visual C++.  Radon transport is 
multiphase in the NRC and GoldSim models, but limited to the gas phase in the GCD model.  The 
processes included in each model are summarized in Table I.   
 
Table I. Summary of processes assumed to contribute to the transport of Rn-222 in the three flux 

density models. 
 
Process NRC Model GoldSim® 

Model 
GCD Model 

Radon Transport Processes 
   Radioactive decay X X X 
   Radon emanation from solid phase X X  
   Radon emanation from liquid phase X   
   Radon adsorption on solid phase X   
   Radon dissolution in liquid phase X X  
   Radon diffusion in the gas phase X X X 

Radon Parent Transport Processes 
   Radioactive decay and ingrowth X X X 
   Upward liquid advection  X X 
   Diffusion in the liquid phase  X X 
   Solution/Dissolution in liquid phase  X X 
   Adsorption on the solid phase  X X 
   Plant uptake and translocation  X X 
   Invertebrate burrowing  X X 
   Vertebrate burrowing  X X 
 
Rn-222 Effective Diffusion Coefficient 
 
Estimating the Rn-222 flux density requires the effective diffusion coefficient.  The Rn-222 
effective diffusion coefficient can be obtained from predictive models or by direct measurement.  
Predictive models using porosity and water content as the independent variables are the simplest 
alternative, but questions about the universal applicability of these models persist [8].  
Measurement of the effective diffusion coefficient offers the advantage of matching field 
multiphase conditions, but is time consuming and costly [9].  Transient and steady state 
laboratory measurement methods and field methods have been reported [10, 11, 12], but no 
standard methods are available, few laboratories have the equipment and expertise, and no 
standard reference materials or laboratory intercomparison programs exist.   
 
Therefore, the NRC and GCD models were initially prepared using five alternative Rn-222 
effective diffusion coefficient predictive models.  Published models that were commonly used 
for Rn-222 or that were tested for a significant number of different soil types were selected.  
During the Monte Carlo simulations, a single diffusion coefficient model is selected at random 
by a model pointer and a diffusion coefficient estimated for that realization. 
 
Nuclear Regulatory Commission Regulatory Guide 3.64 recommends that licensees use an 
empirical relationship for the effective diffusion coefficient of the form: 

( )[ ]5246107 SSS
e exD +−−−= φ       (Eq. 2) 
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where De is the effective diffusion coefficient (m2 porous medium s-1), S is the moisture 
saturation of the medium (dimensionless), and φ is the total porosity (m3 m-3) [4].  Rogers and 
Nielson [9] later updated this relationship using over 1,000 measurements on soils.  They 
recommended a relationship of the form: 

( )φφφ
1466 SS

oe eDD −−=       (Eq. 3) 
where Do is the 222Rn free air diffusion coefficient (m2 air s-1).   
 
Predictive models for the effective diffusion coefficient not specific to 222Rn have been published 
in the soil physics literature.  Jin and Jury [8] evaluated the validity of four published models and 
concluded that the model that best fit the data was the Millington and Quirk model [13]: 

op DD 3/2

2

φ
ε

=         (Eq. 4) 

where Dp is the soil-gas diffusion coefficient (m3 soil air m-1 soil s-1), and ε is the air-filled 
porosity (m3 m-3).  The soil-gas diffusion coefficient is assumed to be related to the effective 
diffusion coefficient as De = Dp / ε.  Muldrup et al. [14] compared published models for dry 
sieved packed soil columns with measurements on wet soils.  They proposed adjusting the dry 
soil models with a water-induced linear reduction (WLR) term, equal to the air-filled porosity 
divided by the total porosity (ε /φ), to account for moisture effects on the air-filled pore shape 
and connectivity.  A WLR model based on a model described by Marshall [15]: 

op DD
φ
ε 5.2

=         (Eq. 5)  

was found to best fit the data for six differently textured wet soils repacked in columns. 
 
Muldrup et al. [16] have proposed and tested [17] a soil-water-characteristic (SWC) dependent 
model for undisturbed soils.  Using data for 126 different soils, they found a high correlation 
between the macroporosity, ε100, or porosity at a water potential of -100 cm H20, and the 
diffusion coefficient.  Substituting this relationship into a previously described expression for the 
unsaturated hydraulic conductivity modified for gas diffusivity, they obtained an expression of 
the form: 

( )
b

p DD
/32

100
100

3
1000 04.02

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

ε
εεε     (Eq. 6) 

where b is the Campbell [18] soil water retention parameter.  The relationship between water 
potential and volumetric water content was measured by pressure plate apparatus [19] and 
thermocouple psychrometry [20] for 33 site samples.  The Campbell [18] b parameter was 
calculated as the slope of the log-log transformed plot of 33 water potential and volumetric water 
content curves. 
  
The site-specific effective diffusion coefficient was also estimated by laboratory measurement.  
A single alluvial sediment sample was collected as a composite of 10 randomly selected samples 
from stockpiled soils used for cover construction at the Area 5 RWMS.  The random samples 
were collected from the soil pile surface by spade and sieved in the field through a 19 mm sieve.  
Samples were passed through a #4 sieve in the laboratory and packed in columns to the field-dry 
bulk density of 1.60 g cm-3.  Six replicate samples were prepared at four volumetric water 
contents, 0.05, 0.10, 0.15, and 0.20.  The radon diffusion coefficient was measured using the 
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laboratory transient-diffusion method of Kalkwarf et al. [10].  The data were fit to a probabilistic 
linear model: 

αθβ += cveD       (Eq. 7) 
where β and α are normally distributed variates and θv is the volumetric water content (m3 m-3). 
 
Uncertainty Analysis 
A one-dimensional parameter uncertainty analysis was performed by assigning probability 
density functions (pdfs) to each input parameter, repeatedly sampling input pdfs using Latin 
hypercube sampling (LHS), and calculating model outputs.  Uncertainty is defined here as the 
lack of knowledge about the mean conditions expected over the dimensions and the design life of 
the disposal facility.  Therefore, the observed variability in input parameters (i.e., real spatial and 
temporal differences in the population) does not appropriately describe the desired pdf.  The 
long-term spatial and temporal mean conditions where represented by using the mean and 
standard error of the data when site-specific data were available.  Model inputs are summarized 
in Table II. 
 
Table II.  Input parameter distributions 
 

Modela Parameter (units) Distribution(parameter values)b 
1pm, 2pm U-234 half-life (yrs) Triangular (2.455, 2.461, 2.449 x 105) 
1pm, 2pm Th-230 half-life (yrs) Triangular (7.588, 7.618, 7.558 x 104) 
1pm, 2pm Ra-226 half-life (yrs) Triangular (1,600, 1,607, 1,593) 
2pm Longitudinal dispersivity (m) Uniform ( 0.01, 0.3) 
2pm, 3 Liquid advection rate (m yr-1) Beta (0.751, 1.78, 6.55E-7, 5.40E-4) 
2pm, 3 Liquid diffusion coefficient (m2 yr-1) Uniform (0.0095, 0.0631) 
3 Ostwald Rn solubility coefficient Triangular (0.25, 0.26, 0.24) 
1pm, 2pm, 3 Dry bulk density (g cm-3) Normal (1.59, 0.01) 
1pm, 2pm, 3 Particle density (g cm-3) Normal (2.54, 0.01) 
2pm, 3 Depth of no liquid water flux boundary (NFB) (m) Triangular (2, 1.5, 2.5) 
3 Volumetric water content above NFB (m3 m-3) Normal (0.0577, 0.0002) 
2pm, 3 Volumetric water content below NFB (m3 m-3) Normal (0.079, 0.001) 
1p, 2p, 3 Rn-222 free air diffusion coefficient (m2 s-1) Uniform (1.0 x 10-5, 1.2 x 10-5) 
1m, 2m, 3 Rn-222 De coefficient regression slope Normal (-1.699 x 10-5, 1.94 x 10-6) 
1m, 2m, 3 Rn-222 De coefficient regression intercept Normal (4.99 x 10-6, 2.64 x 10-7) 
1p, 2p Cover Campbell b water retention parameter Normal (4.3, 0.1) 
1p, 2p Cover macroporosity (m3 m-3) Normal (0.146, 0.006) 
1pm, 2pm, 3 Initial Ra-226 waste concentration (Bq m-3) Lognormal (1.9 x 105, 1.63)  
1pm, 2pm, 3 Initial Th-230 waste concentration (Bq m-3) Lognormal (6.0 x 105, 1.70)  
1pm, 2pm, 3 Initial U-234 waste activity concentration (Bq m-3) Lognormal (2.0 x 108, 1.43)  
1pm, 3 Waste emanation coefficient Normal (0.02, 0.8) 
2pm, 3 U-234 plant concentration ratio Lognormal (0.017, 5.7) 
2pm, 3 Th-230 plant concentration ratio Lognormal (6.6E-3, 5.7) 
2pm, 3 Ra-226 plant concentration ratio Lognormal (0.075, 5.7) 
2pm, 3 U-234 distribution coefficient (m3 kg-1) Lognormal (7.2E-3, 1.60) 
2pm, 3 Th-230 distribution coefficient (m3 kg-1) Lognormal (6.3, 1.58) 
2pm, 3 Ra-226 distribution coefficient (m3 kg-1) Uniform (0.07, 0.3) 
2pm, 3 U-234 solubility constant (moles L-1) Uniform (2E-6, 7E-3) 
2pm, 3 Th-230 solubility constant (moles L-1) Uniform (6E-8, 6E-6) 
2pm, 3 Ra-226 solubility constant (moles L-1) Loguniform (9E-9, 9E-7) 
2pm, 3 Annual grasses primary productivity (kg m-2 yr-1) Normal (6.2E-4, 2.2E-4) 
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Modela Parameter (units) Distribution(parameter values)b 
2pm, 3 Annual grasses root to shoot ratio Triangular (1.53, 2, 1) 
2pm, 3 Perennial primary productivity (kg m-2 yr-1)  Normal (7.35E-2, 8.6E-3) 
2pm, 3 Shrub primary productivity (kg m-2 yr-1) Normal (0.22, 0.026) 
2pm, 3 Annual grasses root distribution parameter Normal (2.19, 0.036) 
2pm, 3 Perennial root distribution parameter Normal (23.9, 0.313) 
2pm, 3 Shrub root distribution parameter Normal (14.6, 0.0807 
2pm, 3 Annual grasses root depth (m) Normal (1.58, 0.50) 
2pm, 3 Perennial root depth (m) Normal (3.6, 0.9) 
2pm, 3 Shrub root depth (m) Normal (3.15, 0.79) 
2pm, 3 Invertebrate burrowing rate (kg m-2 y-1) Normal (0.22, 0.05) 
2pm, 3 Invertebrate burrow depth (m) Normal (3.3, 1.2) 
3 Pogonomymex sp. nest volume (m3) Normal (0.64, 0.09) 
3 Pogonomymex sp. colony life span (yrs) Normal (20.2, 3.6) 
3 Pogonomymex sp. colony density (ha-1) Normal (28, 4) 
3 Pogonomymex sp. burrow shape parameter Normal (10, 0.71) 
3 Messor sp. nest volume (m3) Normal (0.94, 0.26) 
3 Messor sp. colony life span (yrs) Normal (9, 1.5) 
3 Messor sp. colony density (ha-1) Normal (4.7, 1.8) 
3 Messor sp. burrow shape parameter Normal (8.4, 1.5) 
2pm, 3 Mammal burrowing rate (kg m2 y-1) Normal (2.79, 0.70) 
2pm, 3 Mammal burrow depth (m) Normal (2.0, 0.5) 
3 Rodent mound volume (m3 yr-1) Normal (0.092, 0.006) 
3 Rodent mound density (ha-1) Normal (192, 13.7) 
3 Rodent burrow shape parameter Normal (4.5, 0.84) 
3 Large mammal mound volume (m3 yr-1) Normal (0.14, 0.04) 
3 Large mammal mound density (ha-1) Normal ( 2, 1.4) 
3 Large mammal burrow shape parameter Normal (4.7, 0.69) 
3 Soil resuspension rate (yr-1) Uniform (8 x10-6, 1 x 10-3) 
3 Wind speed (m s-1) Normal (2.6, 0.09) 

a – 1p – NRC model with predicted De, 1m – NRC model with measured De, 2p - GCD model with 
predicted De, 2m – GCD Model with measured De, 3 – GoldSim® model with measured De 
b Triangular parameters: mode, maximum, minimum; normal parameters: mean, standard deviation; 
uniform parameters: minimum, maximum; lognormal parameters: geometric mean, geometric 
standard deviation; beta parameters: alpha, beta, minimum, maximum 

 
Sensitivity Analysis 
 
Sensitivity analyses were performed using SimLab 2.2 [21].  The one-at-a-time screening 
method of Morris [21, 22] was performed using eight replicates and a sample size of 344 and 136 
for the GCD and NRC models with the predictive effective diffusion coefficient models and 328, 
112, and 384 realizations for the GCD, NRC, and GoldSim® models using the measured site-
specific effective diffusion coefficient.  Sample-based methods were applied to model results for 
4,000 realizations using LHS.  Scatterplots, the Pearson product correlation coefficient (PEAR), 
standardized regression coefficient (SRC), and partial correlation coefficient (PCC) were 
generated for the raw data.  The Spearman coefficient (SPEAR), standardized rank regression 
coefficient (SRRC), and the partial rank correlation coefficient (PRCC) were generated for the 
rank transformed data.  Variance-based global sensitivity indices (SIs) were calculated using the 
extended Fourier amplitude sensitivity test (FAST) and Sobol’s method.  FAST and Sobol SIs 
were calculated with sample sizes ranging from 4k to 16k realizations.    
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RESULTS 
 
The production of Rn-222 in waste at the Area 5 RWMS is expected to increase over time 
because the radon parent inventory proportions are currently U-234 > Th-230 > Ra-226.  The 
results from the GoldSim® model, which shows the maximum Rn-222 flux density occurring at 
the end of the 1,000-year compliance period, is representative of all three models (Fig. 1). 
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Fig. 1. Mean, median, 5th and 95th percentile Rn-222 flux density over time as estimated by 

the GoldSim® model from 4,000 realizations. 
 
When the predictive models for Rn-222 effective diffusion coefficients were used, the GCD 
model produced slightly higher mean-flux density estimates than the NRC model (Fig 2).  When 
the laboratory-measured effective diffusion coefficient was used, the NRC and GoldSim® model 
produced similar means, while the GCD model continued to give slightly higher results.  The 
GCD model does not include an emanation coefficient, effectively assuming that all Rn-222 is 
released to the air-filled pore space.  This may in part explain the higher Rn-222 flux densities 
estimated by the GCD model. 
 
All models indicate a high expectation of compliance with the 0.74 Bq m-2 s-1 performance 
objective.  The models using the predictive relationships for the effective diffusion coefficient 
show considerably higher uncertainty than the models using the measured effective diffusion 
coefficient.  The GCD model shows the largest reduction in uncertainty with use of the  
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measured site-specific effective diffusion coefficient.  The Rn-222 flux density distributions for 
the NRC and GoldSim® models are nearly identical. 
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Morris’s one-at-a-time method is a global sensitivity method that identifies parameters with 
negligible effects, linear and additive effects, and nonlinear or interactive effects [21, 23].  The 
method calculates the mean and standard deviation of replicated local sensitivity measures.  A 
mean value that is high relative to other parameters indicates linear and additive effects.  A high 
standard deviation indicates nonlinear or interactive effects.  Considering both the mean and 
standard deviation for the NRC model with the predictive effective diffusion coefficient models, 
sensitive parameters are the emanation coefficient, the effective diffusion coefficient model 
pointer, Th-230 inventory, U-234 inventory, the Rn-222 free air diffusion coefficient (Do), and 
the Ra-226 inventory (Fig. 3).  The only parameters showing potentially important nonlinear or 
interactive effects are the emanation coefficient and the effective diffusion coefficient model 
pointer.  There is a nonmonotonic relationship between the value of the arbitrary model pointer 
and the effective diffusion coefficient, which probably explains the nonlinear or interactive 
effects for this parameter. 
 
 

Fig. 2. Box plots of Rn-222 flux density at 1,000 years for five alternative models.  Plot 
shows 10th, 25th, 50th, 75th, and 90th percentiles, mean (dashed) and outliers (cross hair). 
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Fig. 3. Morris’ one-at-a-time method mean and standard deviation for the NRC model with 

predicted Rn-222 effective diffusion coefficient. 
 
Morris’ method is very economical as the minimum sample size is r (k + 1) where r is the 
number of local sensitivity replicates and k is the number of model parameters.  The GoldSim® 
model, with the largest number of parameters at 47, only requires 192 realizations for four 
replicates.  However, experimentation with different numbers of replicates indicated that 
increasing the number of replicates increased the number of nonnegligible (i.e., sensitive) 
parameters and produced results more consistent with the results of other sensitivity measures 
discussed below.  The final analysis was performed with eight replicates, which required less 
than 400 realizations for all models. 
 
The GCD model with the predictive effective diffusion coefficient relationships showed similar 
sensitivities except that it does not include an emanation coefficient and showed slight sensitivity 
to two upward transport parameters: U solubility constant (Ksp) and the liquid diffusion 
coefficient (Table III). 
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Table III. Morris’ screening method mean and standard deviation for the GCD and NRC models 
using five predictive models for the Rn-222 effective diffusion coefficient. 
 

GCD Model, Predicted De NRC Model, Predicted De Parameter 
Mean Standard 

Deviation 
Mean Standard 

Deviation 
Emanation Coefficient a a 1.68 0.819 
De Model Pointer 0.761 0.880 0.504 0.833 
U-234 Inventory 0.706 0.290 0.201 0.212 
Th-230 Inventory 0.448 0.233 0.281 0.311 
Ra-226 Inventory 0.220 0.183 0.078 0.078 
Rn-222 Free Air Do 0.258 0.176 0.153 0.183 
U Ksp 0.190 0.316 a a 
Liquid Diffusion Coefficient 0.117 0.136 a a 
All others <0.06 <0.03 <0.05 <0.03 
a – parameter not in model 
 
The models using the measured effective diffusion coefficient showed similar sensitivities (Table 
IV).  In these models the effective diffusion coefficient model pointer is replaced by pdfs for the 
slope and intercept of the effective diffusion coefficient regression.  These effective diffusion 
coefficient pdfs show reduced sensitivity compared to the predictive model pointer. 
 
Table IV. Morris’ screening method mean and standard deviation for the GCD, NRC, and 
GoldSim® models using a Rn-222 effective diffusion coefficient measured in the laboratory. 
 

GCD Model,  
Measured De 

NRC Model, 
Measured De 

GoldSim® Model, 
Measured De 

Parameter 

Mean Standard 
Deviation 

Mean Standard 
Deviation 

Mean Standard 
Deviation

Emanation Coefficient a a 1.56 0.296 0.066 0.011 
U-234 Inventory 0.669 0.212 0.502 0.272 0.025 0.015 
Th-230 Inventory 0.491 0.243 0.420 0.301 0.021 0.015 
Ra-226 Inventory 0.204 0.066 0.141 0.150 0.008 0.003 
De Regression Slope 0.544 0.144 0.361 0.187 b b 
De Regression Intercept 0.312 0.109 0.192 0.121 b b 
U Ksp 0.182 0.286 a a <0.001 <0.001 
Liquid Diffusion Coefficient 0.122 0.141 a a <0.001 <0.001 
All others <0.06 <0.06 <0.03 <0.02 <0.001 <0.001 
a – parameter not in model 
b – parameter fixed 
 
Scatterplots, correlation, and regression analysis are convenient sensitivity methods because they 
use the same LHS sample used in uncertainty analysis.  Examination of the scatterplots for the 
GCD and NRC model with predictive effective diffusion coefficient models showed no strong 
relationships between the flux density and input parameters except for the effective diffusion 
coefficient model pointer and for the emanation coefficient for the NRC model only.  The GCD 
model does not include an emanation coefficient.  The scatterplot for the effective diffusion 
coefficient model pointer clearly shows a nonmonotonic relationship.  The GCD and NRC model 
with the predictive effective diffusion coefficient relationships are nonmonotonic.  The NRC 
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model shows a positive linear relationship between flux density and the emanation coefficient 
and suggests that non-additive effects with other parameters are occurring.   
 
The GCD and NRC model with predicted effective diffusion coefficients had five parameters 
with p-values less than 0.01 (Table V).  The PEAR, SRC, and PCC all gave the same ranking for 
these parameters.  The PEAR and SRC values are similar, as expected for an uncorrelated 
sample.  The PCC is slightly higher than the PEAR and SRC.  The coefficient of determination, 
R2, for these two models is low, 0.24 for the GCD model and 0.43 for the NRC model, indicating 
that the PEAR, SRC, and PCC results are suspect for these models.  Again, this is likely due to 
nonmonotonicity. 
 
The sensitivity measures calculated for the rank transformed data, the SPEAR, SRRC, and 
PRCC, yielded less consistent parameter rankings.  The rank transformation is expected to 
perform poorly with nonmonotonic data. 
 
Table V. Parameter ranks from sample-based sensitivity measures for the GCD and NRC models 
using five predictive models for the Rn-222 effective diffusion coefficient. 
 

GCD Model, Predicted De NRC Model, Predicted De Parameter 
Raw Data 

(PEAR, SRC, 
PCC) 

Rank Data 
(SPEAR, 

SRRC, PRCC) 

Raw Data 
(PEAR, SRC, 

PCC) 

Rank Data 
(SPEAR, 

SRRC, PRCC) 
De Model Pointer 1 a 2 a, 3 a, 3 2 a 2 a 
Emanation Coefficient B b 1 a 1 a 
U-234 Inventory 2 a 1 a 3 a 2 a 
Th-230 Inventory 3 a 10, 20, 20 4 a 4 a 
Ra-226 Inventory 4 a 5 a 5 a 6, 7, 7 
U-234 Kd 5  6 B b 
Rn-222 Free Air Do 6 4 a 29, 36, 36 5 a 
a – statistically significant, p-value < 0.01 
b – parameter not in model 
 
Examination of the scatterplots for the GCD, NRC, and GoldSim® model with measured 
diffusion coefficient models showed no strong relationships between the flux density and input 
parameters except for the emanation coefficient for the NRC and GoldSim® models only.  The 
NRC and GoldSim® models show a positive linear relationship between flux density and the 
emanation coefficient and suggest that non-additive effects may be present (Fig. 4).   
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Fig. 4. Scatterplot of Rn-222 flux density versus emanation coefficient for the GoldSim® 
model. 

 
The GCD, NRC, and GoldSim® models using the measured effective diffusion coefficient had 
four to seven parameters with p-values less than 0.01.  The results for the raw data and ranked 
data gave the same rankings for at least the first four parameters (Table VI).  The coefficients of 
determination, R2, were high (0.95, 0.92, and 0.95) for the GCD, NRC, and GoldSim® models 
respectively, indicating that a linear model can account for most of the variability observed in the 
output.  There was little or no improvement with the rank transform, confirming that these 
models are well represented by a linear model.  The sensitivity measures calculated for the rank- 
transformed data, the SPEAR, SRRC, and PRCC, yielded consistent parameter rankings for 
statistically significant parameters. 
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Table VI. Parameter ranks from sample-based sensitivity measures for the GCD, NRC, and 
GoldSim® models using an Rn-222 effective diffusion coefficient measured in the laboratory. 
 

GCD Model,  
Measured De 

NRC Model, 
Measured De 

GoldSim® Model, 
Measured De 

Parameter 

Raw Data 
(PEAR, 
SRC, 
PCC) 

Rank 
Data 

(SPEAR, 
SRRC, 
PRCC) 

Raw 
Data 

(PEAR, 
SRC, 
PCC) 

Rank 
Data 

(SPEAR, 
SRRC, 
PRCC) 

Raw 
Data 

(PEAR, 
SRC, 
PCC) 

Rank 
Data 

(SPEAR, 
SRRC, 
PRCC) 

Emanation Coefficient c c 1 a 1 a 1a 1 a 
U-234 Inventory 1 a 1 a 2 a 2 a 3 a 3 a, 2 a, 2 

Th-230 Inventory 2 a 2 a 3 a 3 a 2 a 2 a, 3 a, 3 
Ra-226 Inventory 5 a 5 a 6 a 6 a 4 a 4 a 
De Regression Slope 3 a 3 a 4 a 4 a b b 
De Regression Intercept 4 a 4 a 5 a 5 a b b 
U-234 Kd 6 a, 7 a, 7 6 a c c 6, 31, 31 8, 46, 46 
Ra-226 Plant Soil CR 13, 20, 21 24, 21, 21 c c 5, 11, 11 7, 18, 18 
Bulk Density 27, 19, 19 20, 34, 34 18, 11, 11 35, 27,27 18, 5, 5 24, 5, 5 
Liquid Diffusion Coefficient 7 a, 7 a, 6 7 a c c 23, 8, 8 21, 6, 6 
a – statistically significant, p-value < 0.01 
b – parameter fixed 
c – parameter not in model 
 
The extended FAST and Sobol’s sensitivity indices are variance decomposition methods that 
provide quantitative and model-independent estimates of the contribution of each input 
parameter to the variance observed in the output [22, 23, 24].  These methods can provide 
indices of first order effects and at greater computational effort, total effects.  The sum of total 
effects for first order effects should be 1.0 or less.  However, when the sample size is small, the 
sum of the first order effects SI can be much greater than 1.0 and Sobol’s SIs may be negative.  
The results of both methods should converge as the sample size increases.   
 
First order SIs obtained with 4k and 16k realizations were similar and summed to a values less 
than 1.0 (Table VII).  There is a significant difference between the FAST and Sobol’s SIs and the 
differences were observed to decrease with increasing sample size.   
 
The SIs for first order effects produced a ranking that is similar to the other tests.  A majority of 
the variability in the GCD model with the predictive effective diffusion coefficient relationships 
(61 percent by FAST and 76 percent by Sobol’s SI) are attributable to the diffusion coefficient 
model pointer.  A majority of the NRC model first-order SI was divided between the effective 
diffusion coefficient model pointer and the emanation coefficient.  From 77 to 92 percent of the 
output variability was attributable to first-order effects. 
 
Increasing the sample size from 4k to more than 12k had a lesser effect on the GCD, NRC, and 
GoldSim® models using the measured effective diffusion coefficient.  Usable total effect SIs 
could not be obtained with more than 12k realizations. 
Table VII. Extended FAST and Sobol’s first order SIs for the GCD and NRC models using five 
predictive models for the Rn-222 effective-diffusion coefficient. 
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GCD Model, Predicted De NRC Model, Predicted De Parameter 
FAST SI 

(n = 16,171) 
Sobol SI 

(n = 16,384) 
FAST SI 

(n = 16,171) 
Sobol SI 

(n = 16,384) 
De Model Pointer 0.61 0.76 0.35 0.44 
Emanation Coefficient a a 0.34 0.25 
U-234 Inventory 0.08 0.08 0.04 0.04 
Th-230 Inventory 0.04 0.06 0.05 0.04 
Ra-226 Inventory <0.01 < 0.01 <0.01 <0.01 
Rn-222 Free Air Do 0.02 0.01 <0.01 0.01 
All others 0.02 0.01 0.02 <0.01 

Total 0.77 0.92 0.81 0.77 
a– parameter not in model 
 
When the measured effective diffusion coefficient was used, first order effects were even more 
important, with from 91 to 100 percent of the output variability explained by first order effects 
(Table VIII).  A majority of output variability was explained by variability in the emanation 
coefficient for the NRC and GoldSim® model.  The GCD model which does not include an 
emanation coefficient was most sensitive to the radionuclide inventory.  The Goldsim® 
multivariate result element can calculate a variance-based first order SI it calls an importance 
measure.  The Goldsim® importance values are very similar to the Sobol’s SI.  The emanation 
coefficient, U-234 Inventory, and Th-230 inventory importance measures were 0.74, 0.08, and 
0.08, respectively. 
 
Table VIII. Extended FAST and Sobol’s first order SIs for the GCD, NRC, and GoldSim® models 
using a Rn-222 effective diffusion coefficient measured in the laboratory. 
 

GCD Model,  
Measured De 

NRC Model, Measured 
De 

GoldSim® Model, 
Measured De 

Parameter 

FAST SI 
(n=13,482) 

Sobol SI 
(n=16,384)

FAST SI 
(n=13,482)

Sobol SI 
(n=16,384)

FAST SI 
(n=12,079) 

Sobol SI 
(n=14,336)

Emanation Coefficient b b 0.83 0.69 0.61 0.76 
U-234 Inventory 0.47 0.36 0.09 0.09 0.15 0.09 
Th-230 Inventory 0.22 0.32 0.09 0.08 0.09 0.10 
Ra-226 Inventory 0.07 0.05 0.01 0.01 0.02 0.01 
De Regression Slope 0.19 0.20 0.05 0.04 a a 
De Regression 
Intercept 

0.07 0.07 0.01 0.02 a a 

Perennial Plants Root 
Shape Factor 

0.02 <0.01 b b <0.01 <0.01 

Liquid Diffusion 
Coefficient 

0.01 <0.01 b b <0.01 <0.01 

All others 0.07 0.01 0.03 0.01 0.04 <0.01 
Total 1.10 1.01 1.11 0.94 0.91 0.96 

a– parameter fixed     
b– parameter not in model 
 
 
DISCUSSION 
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All models evaluated produced similar mean and median Rn-222 flux density values.  The 
uncertainty analysis of all five models, including the two models with predictive models for the 
Rn-222 effective diffusion coefficient, indicated a high probability of compliance.  If the purpose 
of the uncertainty analysis was only to assess the likelihood of compliance, then further 
reduction in uncertainty by measurement of the site-specific effective diffusion coefficient is 
probably not warranted for this waste inventory.  However, since the performance objectives also 
require that doses be maintained as low as reasonably achievable, an optimization process 
beyond simple compliance with a regulatory limit is implied.  The main option available for 
reducing Rn-222 emissions is changing cover thickness.  As cover construction costs are high, 
measurement of the site-specific effective diffusion coefficient was judged cost effective.  Once 
uncertainty in the effective diffusion coefficient was reduced, model output uncertainty was 
controlled by the emanation coefficient and to a much lesser extent by the waste inventory.  
Further characterization of these wastes is not feasible, because the waste is already disposed and 
originated from many sources with multiple physical and chemical forms.  Consequently, further 
reductions in model uncertainty are not likely to be obtained. 
 
Although each of the applied global sensitivity analysis methods identified the same parameters 
as sensitive, and produced similar rankings, each had distinct advantages and disadvantages.  The 
advantages of the Morris one-at-a-time screening method are its small sample size and model 
independence.  Its disadvantages are that the results are qualitative and require judgment to 
distinguish the degree of linearity/nonlinearity in the relationship between inputs and outputs.  It 
also uses a nonrandom input vector, thus requiring a separate experiment and a model that can 
read the input vectors.  The advantage of the sample-based methods is that they can use the same 
LHS inputs and outputs as uncertainty analysis.  The disadvantages arise in interpretation of 
results for models that are nonlinear or nonmonotonic.  The variance-based techniques offer 
quantitative model-independent SIs.  The disadvantages are that large sample sizes are required, 
especially to obtain higher or total order effects, and as for Morris’ method, a nonrandom set of 
input vectors is required.  The FAST method requires a smaller sample size than the Sobol’s SIs.  
Sobol’s method, however, has the capability to calculate higher-order effects, whereas extended 
FAST is limited to total effects.  For the models evaluated here, reliable first-order SIs were 
obtained with as little as 4k realizations, but even 16k realizations were insufficient to determine 
total effect SIs.  
 
CONCLUSIONS 
 
Five alternative Rn-222 flux density models developed from similar conceptual models produced 
similar estimates of mean and median flux, but displayed different uncertainties and sensitivities.  
Using a site-specific Rn-222 effective diffusion coefficient measured in the laboratory rather 
than published predictive relationships significantly reduced uncertainty in the flux density at 
1,000 years. 
 
Morris’s one-at-a-time screening method, sample-based methods, and variance-decomposition 
methods of sensitivity analysis produced similar rankings of sensitive parameters.  For the case 
where site-specific Rn-222 effective diffusion coefficient was unknown, the models were most 
sensitive to (in decreasing order of sensitivity), the effective-diffusion-coefficient model 
selected, the emanation coefficient, the U-234, Th-230, and the Ra-226 inventories.  When the 
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site-specific effective diffusion coefficient was available the models were most sensitive to (in 
decreasing order of sensitivity), the emanation coefficient, U-234, Th-230, and the Ra-226 
inventory.  The models were found to be insensitive to parameters describing upward transport 
processes for Ra-226 and its parents. 
 
Each sensitivity method had its advantages and disadvantages.  Selection of the most appropriate 
sensitivity method must be based on consideration of the model properties of linearity and mono-
tonicity, computational expense, and the ability to process input samples generated externally by 
sensitivity analysis software. 
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