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ABSTRACT 
 
Passive Neutron Coincidence Counting (PNCC) and Passive Neutron Multiplicity 
Counting (PNMC) based on (Multiplicity) Shift Register (M)(SR) pulse train correlation 
analyzers is a long established and important non destructive assay method used in the 
quantification of plutonium and other spontaneously fissile materials across the fuel 
cycle.  Very high efficiency neutron chambers (>60%) are now available and are being 
applied to ever more demanding items including impure materials with a high (α, n) rate 
and articles with a high self-leakage multiplication.  This trend means that high 
instantaneous count rates are commonly encountered such that the multiplicity histogram 
extends to high order; in other words the number of events detected in a single 
coincidence gate can be large.  This poses a problem in that the likelihood of accidental 
(chance) coincidences due to random events and overlapping (super) fission histories 
increases and precision is lost in correcting for them.  The epithermal design is one 
attempt to reduce the capture time distribution to minimize the accidentals coincidence 
rate but the field of application is so broad that high instantaneous rates are still 
encountered.  This inevitably results in the need to apply a correction to the observed 
Singles, Doubles and Triples rate for dead time losses.  When the instantaneous counting 
rate is high the uncertainties in the applied corrections can be the accuracy limiting factor 
in the derived counting rate.  Controlling and compensating for dead time losses so that 
target accuracy is achieved is a crucial aspect of a successful design and implementation 
process.  Dead time losses can be reduced substantially on new systems intended for 
special use by using dedicated preamplifier-discriminators for each 3He-filled 
proportional counter together with de-randomizer circuitry and fast encoding electronics.  
These adaptations are costly, however, and may be difficult to retrofit to existing systems.  
In this work we therefore take a fresh look at the way in which corrections for dead time 
losses are applied to the recorded MSR data.  We note several interesting empirical 
correlations observed in experimental data which allow dead time parameters to be 
extracted.  We also comment on the self consistency constraints which exist and can be 
exploited between PNCC and PNMC results and also between expressions for the 



correlated rates derived from the random triggered and signal triggered histograms 
respectively. 
 

INTRODUCTION 
 
At high counting rates the correction of neutron Multiplicity Shift Register (MSR) data 
for dead-time (rate loss) effects is potentially accuracy limiting compared to the counting 
precision.  In the present context we mean by high count rate when the ‘instantaneous 
rate’ of a populated histogram channel correspond to a number n-events falling in the 
coincidence gate of duration Tg, times the dead time per event, δ, gives a product 
φ=(n/Tg)⋅δ that is a significant fraction of unity. 
 
As the detector efficiencies have increased and the multiplicity (‘Triples’) technique has 
been applied to greater Pu masses with higher self-multiplication and also higher random-
to spontaneous fission neutron ratio there has been a corresponding drive to reduce the 
significance of dead time.  This has been achieved by:   

- Designing detector assemblies with a shorter die-away time so that they may be 
operated effectively with correspondingly shorter coincidence gate widths. 

- Distributing the counting efficiency between many and faster 
preamplifier/discriminator units; ultimately each 3He proportional counter can be 
serviced by a dedicated module. 

- Marshalling the logic pulses of minimal width through derandomizer/summing 
circuitry into fast multiplicity register electronics. 

 
These methods have been extremely successful and the state of the practice is likely to be 
extended in the near future, especially for special needs.  However dead-time formalisms 
remain necessary not least because as the measurement capability is extended new and 
more demanding challenges emerge and improved dead-time treatments therefore offer 
another option for reducing the assay uncertainty.  In this regard recently some intriguing 
empirical correlations have been reported.  In this work we make some comments on 
various dead-time correction approaches and present new results that confirm the 
empirical correlations. 
 

CONVENTIONAL NCC 
 
In conventional Neutron Coincidence Counting (NCC) the observed (or measured) 
Singles (or Totals or Gross) counting rate Sm and Doubles (pairs or Reals) counting rate 
Dm are corrected for dead-time losses to yield estimates Sc and Dc for the corresponding 
true (or correct) rates using one of several empirical approaches.  A common approach 
which has been established for many years [1, 2] takes the form: 
 

Sc = Sm⋅exp([a+b⋅Sm]⋅Sm/4)  ,  Dc = Dm⋅exp([a+b⋅Sm]⋅Sm) 
 
where a and b are empirical parameters to be determined for the system usually based on 
preserving the Dc/Sc ratio for a defined fissioning system (such as may be achieved using 
a 252Cf spontaneous fission source) over a suitable dynamic range.  According to these 
expressions the relationship between the Singles and Doubles dead-time correction factor 



is defined by the model and so optimizing on the Dc/Sc ratio is sufficient to extract a and 
b. 
 
An alternative approximation [3] takes the form: 
 
Sc = Sm⋅exp(a⋅Sc)  ,  Dc = Dm⋅exp(b⋅Sc) 
 
where a and b are empirical parameters pertinent to this scheme which again have to be 
determined for the system in question.  This may be done experimentally by several 
methods including using the twin source method, using a series of 252Cf sources or by 
keeping a fixed correlated source while altering the random rate by introducing an (α, n) 
emitter.  When using the twin source method [3] first the Singles rate is treated and then 
the Doubles rates is treated using the estimated true Singles rate from the first step.  This 
is a powerful technique but as typically applied pegs the correction factors at only two 
rates when two sources of about equal strength are used (these being the rate of the 
individual sources and the rate of the two sources combined). 
Note that in both schemes the Doubles correction factor depends only on the Singles rates 
and not on the correlated rate from the source.  In the second approach the expectation is 
that the ratio b/a is approximately equal to 4 so that the Doubles correction factor is close 
to being the Singles correction factor raised to the fourth power but this behavior is not 
imposed by the model nor is it forced during the analysis.  In practice, for systems 
operated without a pulse train derandomizer we observe deviations in the ratio b/a from 4 
in the range ±10%.  At modest rates both correction approaches work comparably well 
and both approximate the Singles correction according to either of the two usual ideal 
types of dead-time, the paralysable or non-paralysable models [4].  However these 
models are only approximations to actual systems and more over strictly only apply to 
random (Poisson) pulse trains.  As the proportion of correlated to random events 
increases (as it may when the detection efficiency is increased) one might expect these 
forms to become less accurate.  To appreciate this one can imagine there being a higher 
probability of short inter pulse separations in a correlated pulse train and hence a higher 
chance for dead-time losses.  The Doubles correction factor should therefore depend on 
the histogram distribution which is item assay dependent. 
 
PASSIVE NEUTRON MULTIPLICITY COUNTING 
 
The most wide spread approach to correcting Passive Neutron Multiplicity Counter 
(PNMC) data for dead-time losses is that described by Dytlewski [5].  The Doubles and 
Triples rates are derived from the observed histogram distributions using weighting 
factors (the so called α and β arrays) based on Vincent’s loss factors which are based on 
the paralysable (Type II, extendable, cumulative or updating) model.  In principle one 
could replace these by non-paralysable factors given by Lang as hinted by Dytlewski 
however, the paralysable model is typically the model of choice for multiplicity counters 
built around gas filled proportional counters.  Now, in principle a cylindrical gas filled 
proportional counter does not have an inherent dead-time, it simply responds to the 
collection of charge as it was deposited in the gas.  However when the analog signal from 
a charge amplifier is presented to a discriminator/logic pulse generator a processing time 
(at least equal to the width of the logic pulse) is created for that channel.  Events that 



have piled-up within the charge collection time of the proportional counter can also be 
missed by the discriminator because the signal may not fall below the threshold to 
register the second (or subsequent) events.  This is the origin of the paralyzability. 
 
Dytlewski’s derivation, however, has nothing to say about how to treat the losses in the 
Singles (or Trigger) rate which determines how often the coincidence gate is opened.  An 
approximate ad hoc expression, Sc = Sm⋅exp(δ⋅Sm), is used, where δ is the dead-time 
parameter.  The Singles and Doubles rates corrected according to Dytlewski therefore do 
not agree exactly with those estimated using the standard NCC approaches although one 
would have the expectation that δ would be numerically close to a/4 or a respectively for 
the two NCC dead-time correction forms cited.  One could say that this is an indication of 
the systematic uncertainty in making such corrections but, it is none-the-less a source of 
inconsistency when NCC and PNMC assays are being compared.  To overcome this one 
could imagine correcting the Singles according to NCC approach and adjusting δ so that 
the Doubles correction also agrees.  With these self-consistency constraints the Triples 
would now be corrected.  In practice this is not done although empirical additional 
multiplicative factors of the form exp(ck⋅Sm) (or (1+ck⋅Sm) to first order - which is 
essentially equivalent for all practical purposes considered here) are often applied to the 
three Dytleski dead-time corrected rates (which we denote by S*, D*, T*), ck being a free 
parameter for counting mode k (k=S, D or T with obvious meaning) to be extracted from 
the characterization data in a best fit sense.  These extra correction factors are justified in 
the sense that the dead-time correction formalism is after all only approximate and is 
being used only as an empirical guide – for example the assumption that the events for 
each histogram bin randomly distributed over the duration of the coincidence gate is an 
approximation for pulse trains that are known to be correlated.  In routine use we almost 
always set cS to zero in our laboratory in keeping with Dytlewski’s suggestion.  
Optimizations are run allowing cD and cT to vary independently but in addition the 
constraints cD=cT and cD=cT/4 are also applied and the solution which gives the best 
overall fit to the experimental data is adopted.  Independent behavior is in the spirit of 
treating the additional corrects in a general and empirical way; demanding equality 
amounts to expecting the additional trigger corrections to be the same for both Doubles 
and Triples; while the factor of four difference is admittedly arbitrary but seems, based 
on experience with a number of diverse instruments, to work out well in practice for 
some systems and is another way of reducing the number of parameters to be extracted 
by one (from what might be a statistically challenged data set). 
 
It is interesting to note that as commonly tackled the dead-time parameters might be 
extracted by requiring the ratios (Dc/Sc) and (Tc/Dc) to each be constant over a chosen 
dynamic range created by 252Cf.  In this approach extra trigger correction factors common 
to all three modes will cancel (part of the logic behind setting cS to zero).  [This problem 
is explicitly circumvented in the NCC approaches as described earlier.]  Of course if we 
are interested in using the ratio (Tc/Dc) in subsequent calculations this fine detail may not 
concern us, but if we are concerned with some other combination such as, say ((Dc⋅Tc/Sc), 
we may expect to get a bias.  Thus, as a matter of good practice, it is recommended to 
optimize on combinations that are sensitive to the parameters of interest and that are of 
direct interest in application. 



 
Vincent [6] considered the problem of making multiplicity dead-time corrections within 
the paralyzable model taking into account time correlations but his results do not appear 
to have been adopted by the community or even independently applied and evaluated 
which appears to be an omission. 
 
Hage and Cifarelli [7] too developed a detailed mathematical model as to how to correct 
multiplicity data within the framework of a paralyzable neutron dead-time system with 
simple exponential die-away profile.  This approach also appears to be worthy of more 
wide spread use subject to more taxing evaluation at higher rates than has hitherto been 
the case and with state of the current practice detectors.  The dead-time corrections for all 
moments depend on the multiplicity distribution.  The treatment, although elegant and 
masterful is also compact and technical which may partially explain why it has not 
percolated more widely.  In common with all treatments however the approach considers 
an idealized detector head.  The dead-time parameters for a system are typically 
determined experimentally by loading the detector chains approximately symmetrically.  
In application deviation form this pattern will emphasize on preamplifier/processing 
circuit more than another and lead to slightly different losses.  It is possibilities such as 
this that suggest more complete data taking information may prove useful in future 
endeavors to understand and more completely simulate rate loss effects. 
 
EMPIRICAL CORRELATIONS 
 
In a recent study [8] some interesting and suggestive empirical dead-time relationships 
have been reported based on the evaluation of some 32 multiplicity systems calibrated 
using 252Cf as the reference correlated neutron source.  It was found in all cases that a plot 
of (Tm/Dm) vs Sm exhibited, somewhat counter intuitively, a linear behavior.  The 
downward trending line had a slope, λ, related to four times the Dytlewski dead-time 
parameter,(i.e. 4⋅δ), such that the ratio (λ/4⋅δ) trended linearly with efficiency.  This 
relationship was confirmed across a wide selection of counters designs and over the 
entire efficiency range 4.5% to 61% investigated. 
 
We tend to think that plotting (Dm/Sm) vs Sm and (Tm/Dm) vs Sm for a 252Cf source and 
interpolating to Sm = 0 will yield an estimate for these ratios characteristic of the 252Cf 
spontaneous fission in the detection system in the limit where dead-time effects are 
negligible.  But this is not strictly true.  The intercept corresponds to the limiting value 
when the probability of overlapping fission events tends to zero.  Dead-time losses 
associated with the inherent time correlated multiplicity of neutrons liberated by the 
fission process will of course still be present.  The losses will none-the-less be much 
smaller than would be the case for a large multiplying item where the fission chain can be 
extend to far higher multiplicity values and where the probability of fission events 
overlapping with each other and also with random (α, n) neutrons is high. 
 
An outstanding question left open in our earlier work [8] was how the dead-time 
parameters and behaviors for a given counter trended with coincidence gate-width.  Here 
we report new measurements taken with a JCC-51 Active Well Coincidence Counter 



(AWCC) [10] to settle this issue.  We note that according to the standard NCC correct 
factor approach there should be no impact although within the Dytlewski approach the 
gate-width appears explicitly in the expressions for the α and β coefficients.  For a 
random pulse train the dependence will drop out since the expected number of events 
varies in direct proportion to the gate width (i.e. the parameter φ=(n/Tg)⋅δ will stay fixed) 
but for correlated neutron counting shorter intervals are preferred and one might therefore 
expect a residual effect (especially at extremely high rates in deeply multiplying items). 
 
The JCC-51 is a high density polyethylene (HDPE) moderated thermal well containing 
42 3He filled proportional counters arranged in two rings.  The cavity has an internal 
cavity of approximately 220mm diameter and depending on the configuration the cavity 
can be up to 350mm high.  The detection efficiency is around 31% and the die-away time 
is approximately 52 µs in the 178mm internal height configuration used in this work.  
Traditionally the shift register electronics are operated with a pre-delay of 4.5µs and a 
gate-width of 64 µs.  In the measurements reported here gate-widths of 32 µs and 128 µs 
were also used. 
 
For each gate-width setting measurements were made with several sources having 
neutron emission rates spanning 103 to 106 neutrons per second.  To obtain the dead-time 
parameters for the NCC case a chi-squared minimization is performed on the Reals-to-
Totals (Doubles/Singles) ratios obtained from the measurements.  Here Χ2 is defined as 
the difference between the dead-time corrected ratios for each of the individual sources 
and the average value of these ratios, weighted by the uncertainty in the ratio.  The 
corrected Doubles and Singles values (Dc, Sc) are obtained using the expressions given 
before with the parameter a being varied, while the parameter b is set to zero. 
 
In the multiplicity case it is the Triples-to-Doubles ratio that is used in a similar chi-
squared minimization process, with the parameter δ being varied.  The parameters cD and 
cT are evaluated simultaneously by requiring that the Doubles-to-Singles and the Triples-
to-Singles ratios respectively are constant across all the sources measured. 
 
For each gate-width three different cases were examined in terms of the relationship 
between cD and cT; the cases were (i) cD = cT, (ii) cD = 4⋅cT, and (iii) cD independent of cT.  
The resulting dead-time parameters are summarized in the Table I.   
 
Table I.  Dead-time parameter determination for the JCC-51 for various gate-width 
settings. 
 
 Parameter Gate-Width = 32 µs Gate-Width = 64 µs Gate-Width = 128 µs 

Coincidence Dead time parameters, b=0 
a 894 ns +/- 3 ns 815 ns +/- 4 ns 854 ns +/- 4 ns 

Multiplicity Dead-time Parameters 
Case 1:  cT = cD 

δ 215 ns +/- 5 ns 203 ns +/- 5 ns 220 ns +/- 5 ns 
cT , cD 185 ns +/- 3 ns 153 ns +/- 4 ns 187 ns +/- 4 ns 



Case 2:  cT = 4cD 
δ 198 ns +/- 5 ns 177 ns +/- 5 ns 194 ns +/- 5 ns 
cD 224 ns +/- 3 ns 214 ns +/- 4 ns 241 ns +/- 4 ns 
cT 794 ns +/- 14 ns 857 ns +/- 15 ns 778 ns +/- 16 ns 

Case 3:  cT independent of cD 
δ 187 ns +/- 5 ns 171 ns +/- 5 ns 157 ns +/- 5 ns 
cD 251 ns +/- 3 ns 228 ns +/- 4 ns 318 ns +/- 4 ns 
cT 1236 ns +/- 41 ns 1003 ns +/- 32 ns 1672 ns +/- 32 ns 

 
Historically, we have found that setting the parameter cD = cT usually yields the lower 
reduced Χ2 value but otherwise have no definitive reason to select this approach for 
correction of the Doubles and Triples rates.  We also note that the values for cD and cT 

will fall into the general range of 0.63⋅δ < cD = cT < 0.9⋅δ. With an average ratio of about 
0.76.  This information can be used as a starting point in our optimizations and/or as a 
general check against our experience. 
 
Figure 1 plots the ratios of the non dead-time corrected Triples to Doubles rates versus 
the non dead-time corrected Singles rates for each of the three gate-width settings.  The 
linear relationship is apparent but the slope of each curve is different.  As tentatively 
suggested in our earlier study [8] the relationship between the slope, λ, of these curves 
and the dead-time parameter, δ, should have a dependence on the (Doubles) Gate 
Utilization Factor (GUF).  From this data we find empirically that dead-time parameter δ, 
is inversely proportional to the square-root of the doubles gate utilization factor fd 
(

2/1
df
λδ ∝ ), and recall that the Triples GUF is crudely equal to the square of the Doubles 

GUF for most counters.  The data is summarized in Table II. 
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Fig. 1.  Plots of the ratio of the Triples to Doubles rates as a function of Singles count rate 
for three gate width (GW) settings.  The same JCC-51 Active Well Coincidence Counter 
with fixed geometry (fission neutron detection efficiency, ε = 30.8%) was used for all 
measurements.   
 
Table II.  Comparison of the dead-time parameters determined by the traditional chi-
square minimization method and determined from the slope of the Triples to Doubles 
ratios.   
 

Gate-Width 
Setting (µs) 

Gate Utilization 
Factor 

Dead-Time 
Parameter (ns) 

T/D Slope (λ) 
(ns) 2/14 df⋅⋅δ

λ  * 

32 0.4191 215.4 ± 5 589 ± 4 1.000 ± 0.014 
64 0.6441 202.7 ± 5 650 ± 4 0.999 ± 0.026 
128 0.8240 220.2 ± 5 799 ± 4 1.057 ± 0.026 

* Note: while the average result for 2/14 df⋅⋅δλ in this table is coincidentally 
approximately equal to 1, had a different well counter been selected a different average 
would have been obtained.   
 
We conclude from the data shown in Table II that in addition to a dependence on the 
neutron detection efficiency, the dead-time has a dependence on the GUF.  To 
demonstrate this statement, Figure 2 plots the correlation between the dead time 
parameter, δ, and the slope, λ, as a function of detection efficiency for 36 counter 
configurations without incorporating a dependence on the gate utilization factor while 
Figure 3 shows the same data with the addition of a scaling factor of (1/fd)1/2.  The 
reduced Χ2 for the fit is reduced from 8.27 to 1.03 suggesting this is a valid dependence. 
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Fig. 2.  Observed relationship between the dead-time parameter, δ, and the slope, λ, of 
the non dead-time corrected Triples to Doubles ratios vs Singles rates, as a function of 

detector efficiency without adjustment for the GUF. 
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Fig. 3.  Observed relationship between the dead-time parameter, δ, and the slope, λ, of 
the non dead-time corrected Triples to Doubles ratios vs Singles rates, as a function of 

detector efficiency after correcting for the GUF. 
 
These data serve to show some rather interesting relationships between the dead-time and 
the basic performance parameters of the coincidence counter and suggest that the dead-
time correction models used for multiplicity analysis may not be entirely robust.  They 
also illustrate that to some reasonable level of approximation, suitable for many 
applications, dead-time parameters can be estimated rather simply without the need for 
convoluted optimizations. 
 
ON CALCULATING FACTORIAL MOMENTS 
 
In this section we discuss how non dead-time corrected Sm, Dm, Tm and higher factorial 
moments may be calculated from the Multiplicity Shift Register (MSR) histograms.  
These are important relationships because they also show the relationships that would 
exist between dead-time corrected rates and histograms.  Recall that each registered event 
(or trigger) causes the (early) coincident (or Reals-plus-Accidentals, (R+A)) gate to be 
interrogated and the histogram bin, N(i), corresponding to the number of events, i, inside 
is increment by one.  The (R+A)-gate opens only a short pre-delay period, Tp, after the 
triggering event and so there is a high chance of events which are correlated in time with 
it falling within it.  We call this the Signal Triggered Inspection (STI) multiplicity 
histogram.  Each event also leads to the (delayed or Accidentals, A) gate to be 



interrogated and the histogram bin, B(i), corresponding to the occupancy number, i, is 
incremented by one.  The A-gate is not opened until a long time, TL, after the (R+A) gate 
is closed, a time long compared to the characteristic lifetime of neutron in the system, so 
that all correlations with the triggering event have effectively vanished.  Thus, for all 
practical purposes the opening of the A-gate forms a random sample of the pulse train 
and for this reason is referred to here as the Random Triggered Interrogation multiplicity 
histogram (the delayed triggered interrogation histogram would also be suitable and 
descriptive).  The RTI is (statistically) equivalent, apart from for the number of gate 
openings, to the histogram that would result from a periodic inspection of a gate of equal 
duration because the pulse train is random in time.  In some sense the RTI histogram can 
be thought of as the background for the STI although it still contains correlated 
information.  The (R+A)- and A-gates are taken to be of equal duration, Tg, 
commensurate with the characteristic die-away time.  In addition we assume here that the 
number of (R+A)- and A-gates opened are equal as would be the case for a conventional 
MSR acquisition the action of which has been outlined above.  However it is trivial to 
amend the expressions to the case where the number of openings is different such as may 
be the case if the A-gate is sampled more frequently.  The benefit of this is established in 
NCC where it is known as ‘fast Accidentals sampling’.  In conventional NCC each event 
opens the delayed A-gate and hence samples a random (in time) segment of pulse train.  
But an equally good segment could have been chosen a gate width later or sooner.  In the 
limit, in order to improve the precision on how well the A-histogram is known, we could 
over sample the pulse train by forming a sample every clock cycle of the MSR.  In the 
expressions below we would simply need to apply the appropriate normalization to the 
action on the histogram. 
 
From the foregoing discussion it may be obvious that the factorial moments can be 
derived from the STI histogram N(i) alone, the RTI histogram B(i) alone or from a 
combination of the two.  We believe this to be an important technical point in relation to 
evaluating the rates precisely along with the associated dead-time correction factors 
although it does not seem to have been looked at in relation to MSR analysis.  The basic 
relations may be derived from a careful and diligent study of the excellent mathematical 
development given by Cifarelli and Hage [9].  We give expressions not only for the usual 
Singles, Doubles and Triples but also for Quadruples (Quads) and Pentuples (Pents).  In 
the terminology of Cifarelli and Hage these five rates correspond to the multiplet rates 
(Rµ/TM), µ=1 to 5, multiplied by the corresponding STI GUF [11, 12] which we call fµ 
below (f1 being unity and f2 being the Doubles GUF etc.) 
 
Before giving expressions for the raw (uncorrected) S, D, T, Q and P rates first let us 
define how we manipulate the RTI (B(i) or A) multiplicity histogram, the STI (N(i) or 
(R+A)) multiplicity histogram and the difference (R or N(i)-B(i)) histogram: 
 
The difference histogram is defined by: 
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For the RTI histogram we define the following operations: 
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where Tg is the gate-width (sec) and t is the data acquisition period (sec).  NT is the total 
number of events recorded which is the same in both the A- and (R+A)-histograms being 
equal to the number of triggers or inspections.  Note the upper limit of the summations is 
nominally infinity and in practice is the number of the highest histogram populated but 
we use the value of 255 which is the hardware limit of the MSR electronics in common 
use in our group. 
 
For the STI histogram we define: 
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(Eq. 14) 

 
For the difference histogram we introduce the following relations: 
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(Eq. 20) 

 
Note that in the Dytlewski scheme of applying dead-time corrections the factors of the 
form i⋅(i-1)…(i-(µ-1)/µ! which act on the histograms will get replaced by modified 
expressions that capture the effect of the dead-time [8]. 
 
The correlated rates expressed in terms only of the RTI histogram are given in equations 
21-25.  (Note the meaning of the xµ terms is discussed later, after the mixed expressions). 
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We note that x1 is equal to unity and can be omitted. 
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(Eq. 25) 

 
 
The correlated rates expressed in terms only of the STI histogram are given by equations 
26-30: 
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(Eq. 29) 
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(Eq. 30) 

 
Next we present expressions (equations 31-35) which are mixed the sense that they make 
free use of both the RTI and STI histograms.  We have made judicial use of the substitution 
mb(1) = (S⋅Tg) in our mixed RTI and STI expressions. 
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(Eq. 35) 

 
There is no immediate advantage apparent in making further substitutions if ones intention 
is to work in terms of mixed RTI and STI histograms.  The attraction of the forms given 
being, in particular, that they do not require the xµ-factors to be estimated.  Occasionally 
however, one does come across in the literature mixed expressions in terms of action on the 
difference histogram but with the mb(µ)/Tg factors in the correlated accidentals correction 
terms replaced.  Thus we arrive at variations for the QMIX and PMIX rates by substituting: 
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Hence we have alternative but formally equivalent forms as follows: 
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These alternative mixed expressions for the QMIX and PMIX rates may offer some advantage 
in precision but this remains to be confirmed experimentally using repeat (cycle) data to 
properly track and quantify the correlated scatter (variances and covariances) in the data. 
 
We are not aware of explicit expressions for Q having previously been given and nor are 
we aware of the clear demarcation between RTI, STI and mixed expressions being drawn 
before. 
 
In these expressions the parameter xµ is the ratio between the RTI and STI gate utilization 
factors (wµ/fµ).  A discussion of these can be found elsewhere [13].  Suffice to say that 
for a useful class of problems they may be taken to be a characteristic of the detector 
system and determined during characterization and calibration work.  The case µ=1 
corresponds to Singles for which w1=f1=1 and hence x1=1.  The case µ=2 corresponds to 
Doubles and so forth.  As one might expect, in general for a given counting condition, 
there is an optimum value of gate-width that minimizes the precision.  If the gate is too 
short correlated events are missed while if it is too long uncorrelated events have a 
greater chance of being detected by chance in the gate and these chance events must be 
subtracted – a process that adds uncertainty.  The RTI, STI and MIX expressions for the 
correlated rates are influenced differently by chance events but it turns out that the 
optimum values wµ and fµ are relatively insensitive to gate-width in practice a good 
compromise can be struck for both simultaneously with a single gate width 
commensurate with the die-away time of the counter. 
 
We have developed several sets of expressions for the correlated rates.  These have been 
terms the RTI, STI and MIX forms respectively.  Within the limitations of counting 
precision for a particular experiment the rates calculated by each form should be 
equivalent.  In a formal sense counting precision to an arbitrary level can be assumed so 
that the relationships may be treated as exact identities during characterizations 
measurements.  The implication for dead-time corrections is that an approach developed 
for one scheme must produce consistent results across all (three) schemes.  In other 
words there are strict relationships and constraints that must exist. 
 
As a case in point the chance pairs rate (“Accidentals”) in NCC may be calculated, as 
evident above, from the product S⋅(S⋅Tg).  The corrected Accidentals rate should 
therefore be consistent with the way in which the Singles rate is corrected.  If an 
empirical approach is being used to make the Singles rate correction then the implication 
is that the α-coefficients (fixed by the Dytlewski dead-time parameter) should be chosen 



to given the same dead-time corrected Accidentals rate – or the argument could be 
applied the other way about.  If the interval density, f(t), of the original process is known 
it is possible to evaluate the mean rate loss for a single channel for either the extended or 
non-extended dead-time models [4].  For certain multiplicity counter applications one 
might expect estimate f(t) reasonable well, iteratively, from knowledge of the 
spontaneously fissile mass, the (α, n) to (SF, n) ratio and the leakage multiplication of the 
item.  This would be an alternative way to estimate the Singles correction rate 
independent of the histograms.  But self consistency would again be a requirement. 
 
We note that in practice the calculated Accidentals is rarely used in the evaluation of the 
net Reals rate.  This is because although on the face of it the S⋅(S⋅Tg) can be determined 
to a very high statistical precision it is also sensitive to variations in the ambient neutron 
countrate.  The agreement between Ameas=S⋅mb(1) and Acalc=S⋅(S⋅Tg) is, for this reason, 
often used as a validity check on the measurement and in particular on the constancy of 
the background during the acquisition.  At low rates fluctuations resulting from sporadic 
cosmic-ray induced neutron bursts come into play and Ameas is again often preferred. 
 
It is clear that the higher order correlations depend on the lower order correlated rates.  
For example three Singles can by chance occur closely in time and mimic a Triple just as 
a Double and a Single may also by chance combine to mimic a Triple.  Thus dead-time 
corrections established for the lower orders (e.g. the NCC expressions) can be fed into the 
calculation of the higher order terms. 
 
It is also clear that the various rates are highly correlated through the histograms and the 
chance events.  In applying them in combination the evaluation of the uncertainty from 
first principles would be a daunting task.  For this reason an assay is invariably broken 
down into a number of shorter counts so that the scatter in the data itself can be used to 
estimate the variance and covariance in the rates and the relevant combinations directly. 
A glance at the mixed expressions shows that the Singles rate will always be positive 
while even at high rates, where due to chance coincidences the (R+A)- and A-histograms 
become similar, the Doubles rate at least remain consistent with zero subject to statistical 
fluctuations.  However, the expressions also reveal that the higher order rates (triples and 
above) can be driven systematically negative by chance coincidences at high rates.  The 
challenge of the dead-time correction strategy is to correct for this most effectively and it 
would seem that the mixed expressions are attractive because they work on the difference 
histograms. 
 
The NCC dead-time approach applies a correction factor to the observed Singles and 
Doubles rates to obtain dead-time corrected values.  The correction factor for the Doubles 
is approximately the fourth power of the Singles correction factor.  From the form of the 
equations it is now evident that the use of a simple multiplicative scaling factor will not 
work for Triples (since the uncorrected rate may be negative which is non-physical).  If 
our understanding of some reports in the literature is correct, however, the expectation at 
low rates would be that the Triples could be corrected using a factor about equal to the 
12th power of the Singles correction factor [14].  In another place, which we do not fully 
understand yet [15], in the limit of low Singles rate the Doubles and Triples correct 



factors would seen to be the square and the cube, respectively, of the Singles correction 
factor.  By the same general argument as invoked above we would not expect an 
additional multiplicative factor of the form exp(cT⋅Sm) applied to T* to be appropriate 
since (e.g. from equation 33) the evaluation of the Triples rate is a composite expression 
with parts with different dead-time behaviors. 
 
CONCLUSIONS 
 
Multiplicity counting is an established technique in widespread use.  The literature is vast 
and full of pitfalls for the uninitiated.  We do not claim to have a complete picture of the 
field and must apologize to our colleagues if we have omitted a key contribution for the 
sake of brevity or out of ignorance.  We hope that our thoughts can help spur a new wave 
of interest and exchange on the important topic of dead-time corrections.  We have 
indicated several areas where consistency arguments reveal deficiencies in the currently 
accepted methods and that may need addressing in the more taxing assay scenarios. 
 
Theoretical dead-time models at best approximate physical reality and will deviate from 
it to a greater or lesser extent for a particular dynamic range and degree of correlation.  
Although one would like consistency between various approaches a pragmatic approach 
would be to apply a plurality of methods and use the differences as an indication of the 
systematic model dependent uncertainty involved. 
 
We are struck by the outstanding work of a number of investigators working in this field, 
not least by the efforts at the JRC, Ispra, over two decades ago.  The algebraic 
development of the instrumental point model to the higher multiplets and the theoretical 
development of dead-time corrections applicable to the multiplicity histograms is tedious 
and only approximate.  This might explain the limited appreciation and relatively narrow 
uptake of these developments.  With the advent of improved transport tools and faster 
readily available computers we therefore find ourselves drawn to the numerical approach 
long advocated by Bondár [14].  The point model can be replaced by a detailed Monte 
Carlo simulation to create a pulse train that can be analyzed in software including 
allowance for dead-time losses.  We can anticipate this approach being used in the near 
future to explore the kinds of problems addressed in this paper. 
 
Theoretical models serves to guide empirical formalisms and these can be bounded for 
certain classes of problem.  New empirical correlations have recently emerged and we 
have presented new work with a JCC51 AWCC with respect to dead-time and gate-width 
dependence.  A counter of higher efficiency and operated at higher rates would be useful 
in looking at the problems highlighted in greater detail. 
 
In our future work we intend to explore a variety of dead-time correction methods, as 
indicated, and also to evaluate simulation tools which can model the Monte Carlo 
generated pulse trains from the detector banks and through the various and interconnected 
elements of the counting electronics.  This approach is more flexible than the simple 
(single paralyzable) analytical models routinely applied today.  It allows a distributed 
system comprising a number of preamplifiers and other components to be considered 



with each element having its own type of dead-time behavior.  However, it is clear that 
very long pulse trains and many cases must be simulated to achieve meaningful precision 
and range and this will in itself present a significant challenge.  For investigative 
purposes experimental studies with list mode data acquisition will be a valuable asset 
(although data storage and processing times currently preclude such methods for routine 
assays in the MHz count rate regime which is the target of future systems). 
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