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ABSTRACT 
The development of a functional multidetector device with the capability to precisely locate and 
characterize multiple gamma sources required sophisticated mathematical modelling 
incorporating device geometry, material properties and gamma radiation interaction with 
detector module. This paper describes some aspects of the mathematical modelling performed 
for the development of ShD-3 multidetector device.  Specifically, the methodology for 
mathematical modelling of gamma-radiation angular distribution measurement for numerous 
point sources is presented and calibration data confirming adequacy of the model are presented. 

INTRODUCTION 
Multidetector device ShD (Fig. 1) was successfully employed for gamma-radiation angular 
distribution measurements at the Chornobyl NPP [1]. Now development of the innovative ShD-3 
device is under way. The prototype device, ShD-3, consists primarily of a lead (Pb) sphere 
containing recessed cadmium-zinc-tellurium (CZT) detectors placed at approximately equidistant 
intervals around the periphery of the sphere. Crystal size is 6х6х3 mm.  Advantages of CZT 
detectors are small size, high efficiency, relative wide dynamic range, ability to work in high 
background radiation fields, and some spectrometric capability.  The prototype device allows 
real time data acquisition and control. 

MATHEMATICAL MODEL 

The mathematical modelling methodology is based on response functions formalism. Here a 
response function determines counts for each detector under fixed point source position. Every 
source position has a corresponding set of response functions for multiple detectors that are 
exposed to the source to a degree dependent upon their location in the device relative to the 
source. Individual detectors have multiple response functions relevant to multiple sources to 
which they are exposed. 



 
Fig. 1. Geometry of ShD device. 1 – lead body; 2 – collimating hole; 

3 – detector capsule; 4 – detector. 

Angular Distribution Functions Renewal Procedure 

Angular distribution function ),( ϕθH is doze rate observed in the direction defined by spherical 
coordinates ),( ϕθ  in the coordinate system with center coinciding with ShD geometrical center. 
During the measurements all data on the angular distribution is comprised in the detector values. 

Renewal procedure exploits the fact that each detector registers some averaged over the solid 
angle doze rate. This solid angle depends on the collimated hole detector is placed in (see Fig 1., 
pos. 2). So, approximated distribution function could be written as follows 
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where iH  is doze rate averaged over solid angle Ω, and indicator function ),,( ΩΘ θϕ is defined 
as 
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Averaged values iH  are directly related to response functions. According to definition response 
function give Sh-D device detectors values for point source with fixed position. In fact, they 
constitute vector-function for the source angular coordinates: 
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where det
32

det
1  ,, HH K  represent doze rate for given point source registered by each of the 

detectors. 



Doze rate values registered by detectors considerably depend on the ShD device geometry and 
construction. This follows the fact that each detector registers incident gamma-radiation from the 
collimation hole together with radiation transmitted through the SdD material. As the result 
values measured by detectors differ from the real values by this additional irradiation values. In 
order to give account for this additional radiation we can represent measured values det

iH  as 

iii HHH ~det += , (Eq. 4) 

where iH~  – doze rate from the transmitted radiation. 

Transmitted radiation doze rate iH~  could be approximated by the following expression 
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where ijα  are attenuation coefficients for the radiation incident into solid angle jΩ . 

From the (Eq. 1) and (Eq. 2) follows a closed linear system for iH  
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Attenuation coefficients were initially calculated from the lead sphere geometry and verified by 
calibration procedure. On the next stage geometrical model of the complete device ShD-3 using 
GEANT-3 simulation software was created. Monte-Carlo simulation for this model allowed to 
study attenuation coefficients dependence on the distance from ShD device and also gave us 
more precise values of attenuation coefficients.  
Simulation results are shown on Figure 2. Here for sake of simplicity transition coefficients are 
used instead of attenuation coefficients (transition coefficient is an inverse proportion to 
attenuation coefficient). As it follows from the Figure 2 radiation transition coefficients (and also 
attenuation coefficients) vary weakly with the distance starting from the 70 cm point. Thus 
calculated attenuation coefficients and response functions could be employed for the procedure 
of real gamma-radiation angular distribution renewal for the distant sources. 

Point radiation sources modelling procedure 
Response functions obtained from the Monte-Carlo simulation provide the way for angular 
distribution measurement procedure modeling in the case of multiple point radiation sources. 
Such a procedure requires a considerably large set of response functions for various radiation 
source positions to achieve a reliable accuracy. Direct calculations for entire spatial angle are too 
time consuming due to large amount of numerical calculations. We can essentially reduce 
number of calculations taking into account the symmetry of detection module. 



 
Fig. 2. Transition coefficient dependence on the distance from ShD device for the various 

detector layers 

Symmetry consideration of ShD device shows that detector collimating holes are placed in the 
centers of icosadodecahedron’s faces. So entire detection module symmetry corresponds to 
icosahedron’s spatial symmetry group. Symmetry transformations of that group being applied to 
response function for given source position result in response function for another source 
position. So we have to define icosahedron’s group presentation in the space of 32-vectors 
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where Ĝ  is an operator belonging to icosahedron’s symmetry group [2]. Obviously the result of 
operator Ĝ action on vector iF  is some permutation of its elements. Thus operators Ĝ  implement 
a permutation subgroup. This subgroup is isomorphic to the elements of the crystallographic 
icosahedron’s symmetry group. So, formal procedure requires construction of permutation 
operators Ĝ  for all elements of icosahedron’s symmetry group. 

Firstly, it should be noted that symmetry properties of detection module allow us to consider it as 
icosahedron with collimating holes located in its vertices and centers of its faces. Rotations 
belonging to the symmetry group obviously lead to transformation of every face into some other 
side. For the means of permutation operator construction it is sufficient to consider 
transformations that undergo one fixed icoshedron’s face. In our case we shall consider face with 
detectors 1,7,11 and 2 (see Table 1) as face 1. 

Table 1. Face Centers and Corresponding Vertices Numbers. 

Face no Center 
number 

Vertex 
number 

1 2 1, 7, 11 
2 3 1, 7, 8 



3 4 1, 8, 9 
4 5 1, 9, 10 
5 6 1, 11, 10 
6 12 7, 11, 22 
7 13 8, 7, 23 
8 14 9, 8, 24 
9 15 10, 9, 25 
10 16 11, 10, 26 
11 17 7, 23, 22 
12 18 8, 24, 23 
13 19 9, 25, 24 
14 20 10, 26, 25 
15 21 11, 22, 26 
16 27 22, 26, 32 
17 28 23, 22, 32 
18 29 24, 23, 32 
19 30 25, 24, 32 
20 31 26, 25, 32 

In order to study face transformation one should fix both its location and spatial orientation. For 
this it is necessary to fix face center (No. 2 in our case) and one of its vertices (No. 1). So every 
rotation belonging to the symmetry group could be defined by setting the numbers of holes that 
are holes number 1 and 2 are transformed to. Let these be holes number p and q correspondingly. 
Possible values of p and q are defined by Table 1. 

Let pnr  and qnr  denote unit vectors pointing from device center to the corresponding holes. Using 
these vectors it is possible to construct corresponding rotation matrix in Cartesian space. 
Namely, one could construct three mutually orthogonal vectors xer , yer , zer , defining the new 
coordinate system 
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 (Eq. 8) 

Rotation matrix for this case is given by Cartesian coordinates of vectors xer , yer , zer  
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This matrix defines transformation of detector coordinates to the new coordinate system and is 
isomorphic to permutation operatorĜ . Now we can obtain explicit form of the operator Ĝ  by 
finding correspondence between Cartesian coordinates of detector holes after transformation 

kiki nGn =′ , (Eq. 10) 

and initial coordinates. This gives us 32 transformation rules { }32,,1,; K=′′→ rrrr , where r is 
hole number, this way defining permutation operator Ĝ . 

So, using the above procedure we were able to obtain response functions for the every face from 
those calculated initially for the face 1 during the Monte-Carlo simulation. As every response 
function give detectors counts for the specific point radiation source the set of response functions 
could be employed for modelling purposes. Namely, one can easily obtain response function for 
several point sources performing addition of the response functions for each source weighted by 
the relative intensity coefficient. 

The above procedure was implemented using C++ language. We have carried out calculation for 
two and three sources corresponding to the calibration measurements with real sources (Fig. 3). 
Perfect agreement achieved proving the correctness of developed modeling method. 

 
Fig. 3. The result of modeling for two sources. 

The developed modelling procedure was also used to study the angular resolution of ShD device. 
Numerical calculations proved it to be within 20-30 degrees. 

IMPORTANCE OF WORK 
Multi-detector devices have proven their efficiency in the polluted area of the Chernobyl Nuclear 
Power Plant “Shelter Object” (SO).  But their application is not limited to SO.  Radiation 
accident areas, routine maintenance of nuclear power plants, decontamination and 
decommissioning of nuclear weapons facilities, and monitoring of radioactive waste storage 
facilities are places where this mathematical modeling could be successfully employed. 
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