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ABSTRACT 

Evaluation of the directional diffusivities and adsorptive properties of natural barrier materials is of 
fundamental importance in the design and assessment of the geological disposal of hazardous 
contaminants including radioactive nuclear wastes. 

In order to facilitate evaluation of the directional diffusivities of anisotropic media, a single-reservoir 
radial diffusion test for cylindrical specimens is proposed and an analytical solution corresponding to the 
experimental configuration of the proposed test is derived in this study. The feasibility of the diffusion 
test depends on whether the experiment can be performed within a reasonable period and whether reliable 
parameter estimation is ensured. In order to examine these factors for the proposed test, a feasibility study 
based on theoretical and numerical examinations was performed. 

A series of examinations showed that the use of a sorptive tracer is advantageous for both obtaining 
measurement data within a short period of time and for increasing parameter sensitivity; however these 
also depend on selected experimental conditions, such as the dimensions of the specimen and the 
reservoir. The effects of the tracer properties and the other experimental conditions can be represented by 
the dimensionless reservoir volume defined as the ratio of reservoir volume over the adsorptive capacity 
of the specimen. Therefore, in designing experiments, it is important to evaluate the value of the 
dimensionless reservoir volume based on the information available for the testing material and the tracer. 

When the effective diffusion coefficient of the testing material is very small, the duration of the 
experiment becomes very long. In such a case, a practical way of determining the values of the 
parameters is inverse analysis of the transient data. In order to clarify the applicability and limitations of 
inverse analysis for the proposed test, typical inverse methods are briefly summarized and some 
considerations are made, especially as regards characterization and conditioning of the weighted Jacobian 
matrix for the inverse analyses. Characterization of the weighted Jacobian matrix for the proposed test 
revealed that the weighted Jacobian matrix is not necessarily well-conditioned, owing to differences in the 
orders of magnitude between the values of the effective diffusion coefficient and the capacity factor. A 
promising way of conditioning the weighted Jacobian matrix is also introduced. 
 
INTRODUCTION 

Safety assessments of facilities involved in geological disposal of hazardous wastes, including radioactive 
nuclear waste, are generally performed through mass transport simulations. Transport of contaminants, 
such as radionuclides, through an engineered and natural barrier system is mainly controlled by advection, 
dispersion, sorption and chain decay. When groundwater flow is very slow, the most important 
mechanisms of transport and retardation are diffusion through and sorption onto the barrier materials, and 
thus evaluation of relevant parameters, particularly the effective diffusion coefficient and capacity factor, 
is of fundamental importance in safety assessments [e.g., 1-10]. 
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The diffusion of substances in porous media is known to depend on the geometric orientation of the pore 
structure [e.g., 10,11]. For example, preferentially layered pore structures due to sedimentation in 
sedimentary rocks may cause anisotropic diffusion in directions perpendicular and parallel to the bedding 
plane. Thus, in order to evaluate diffusion phenomena in anisotropic media, directional diffusivities 
should be investigated, especially when the pore structure in a medium cannot be ideally considered to be 
isotropic. 

For measurement of diffusive and adsorptive properties, such as the effective diffusion coefficient and the 
capacity factor, many types of laboratory diffusion tests have been developed. Most tests, however, are 
designed for determining diffusivity in the axial direction of cylindrical specimens cored from boreholes 
or molded in a laboratory [12-14]. Thus, in order to derive a full understanding of the directional 
diffusivities of anisotropic media, combination of the diffusion tests evaluating diffusivities in the 
different directions is needed. 

To evaluate the directional diffusivity as a 2D tensor, several radial diffusion tests for hollow cylindrical 
specimens have been developed [11,15,16]. However, these tests require relatively tedious experimental 
procedures, such as the intermittent replacement of reservoir solutions until steady state data is obtained 
and/or specimen preparation in which a cylindrical specimen is shaped into a hollow cylinder. 

In order to facilitate estimation of the radial diffusivity of a cylindrical specimen, a single-reservoir radial 
diffusion test for a cylindrical specimen is proposed in this study. The advantage of this test over those for 
a hollow cylindrical specimen is the simple experimental configuration. Furthermore, the proposed test 
would facilitate double testing of a cylindrical specimen, by both radial and 1D diffusion tests, which 
would provide better understanding of the directional diffusivity of materials with geometric orientations 
of pore structures, especially preferentially layered sediments. 

As will be shown in the following section, the analytical solution for the single-reservoir radial diffusion 
test for a cylindrical specimen introduced in this study is nonlinear with respect to the effective diffusion 
coefficient and capacity factor during the transient state, as for a hollow cylindrical specimen. Thus, 
inverse analyses for the parameter estimation are indispensable for the radial-diffusion tests, especially 
when the diffusivities of the testing materials are very low, so the steady or equilibrium states are not 
established within reasonable experimental periods. 

In order to examine the applicability of the inverse analysis to the radial-diffusion tests, the typical 
inverse analysis methods are briefly summarized, and potential problems related to parameter estimation 
based on transient data analysis are discussed, using the proposed radial-diffusion test as an example. 

Finally, the feasibility of the proposed test method is examined through a series of numerical simulations 
in which the dependencies of the experimental duration and the sensitivities of the measurement data on 
the experimental conditions are evaluated. 

 
SINGLE-RESERVOIR RADIAL DIFFUSION TEST 

Experimental configuration 

In Fig. 1, the single-reservoir radial diffusion test for a cylindrical specimen (being proposed in this study) 
is compared to radial diffusion tests that use a hollow cylindrical specimen. In the constant inner 
concentration with constant outer concentration test for the hollow specimen (Fig. 1 (a)), the transient 
variation of the diffused flux is measured at the outer reservoir and the steady state flux is analyzed 
[11,15]. Control of the concentrations and measurement of the flux are usually accomplished by 
intermittent replacement of reservoir solutions and measurement of the concentration of the replaced 
solutions. Thus, laborious procedures are required until the steady state is established. In the single-
reservoir radial diffusion test for a hollow specimen (Fig. 1 (b)), a known amount of tracer is injected into 
the source reservoir located inside the specimen and the transient variation in the solute concentration in 
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the inner reservoir is measured. For the parameter estimation, the transient data are analyzed by inverse 
analysis [16]. In the single-reservoir radial diffusion test for a cylindrical specimen (Fig. 1 (c)), the tracer 
is injected into the outer reservoir and the transient variation of the solute concentration in the outer 
reservoir is measured and analyzed. The difference between the single-reservoir radial diffusion tests is 
the location of the source reservoir (Fig. 1 (b) and(c)). In contrast to the other two methods, the single-
reservoir radial diffusion test for a cylindrical specimen does not require shaping of the cylindrical 
specimen into a hollow cylinder. The only requirements are sealing the top and bottom ends of the 
specimen and settling the prepared specimen in the solution reservoir. In the other methods for a hollow 
cylindrical specimen, sealing the exterior of the specimen or setting the inner solution reservoir is also 
required. 

Mathematical formulation and analytical solution 

Assuming a linear sorption model, the radial diffusion of a solute in a porous medium under transient 
conditions can be described by Fick’s second law: 
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where C is the solute concentration [ML-3] in porewater; t and r are the time [T] and distance [L], and De 
and α are the effective diffusion coefficient in the radial direction [L2T-1] and the capacity factor of the 
porous medium [-], respectively. 

Assuming that the specimen has a radius, rout [L], and that the center and exterior of the specimen are 
located at r=0 and r=rout, respectively, on radial coordinates, the initial condition is expressed as: 
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The tracer injection and the reservoir concentration variation are expressed as: 
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Fig. 1. Schematics of radial diffusion tests. (a)Constant inner concentration with constant outer
           concentration radial diffusion test for a hollow cylindrical specimen. (b)Single-reservoir 
           radial diffusion test for a hollow cylindrical specimen. (c)Single-reservoir radial diffusion
           test for a cylindrical specimen. Arrows with bold lines indicate diffusion direction in the
           specimens.



WM’07 Conference, February 25 - March 1, 2007, Tucson, AZ 

  

where C0 is the initial solute concentration [ML-3] in the source reservoir and Vr is the reservoir volume 
[L3]. Although Vr represents the solution volumes in the source reservoir, it is referred to as the reservoir 
volume hereafter. 

In order to facilitate comparisons between different experimental conditions, normalization of the 
analytical model is carried out by introducing the following dimensionless parameters into Eqs. 1 through 
5: 
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where c is the dimensionless solute concentration, ρ the dimensionless distance, τ the dimensionless time, 
and βr the dimensionless reservoir volume defined as the ratio of the reservoir volume over the adsorptive 
capacity of the specimen. Using the above dimensionless parameters, Eqs. (1) through (5) are expressed 
as the following normalized forms: 
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By the above treatment, dimensioned parameters are lumped into relevant dimensionless parameters and 
the number of parameters necessary for describing the single-reservoir radial diffusion test for a 
cylindrical specimen is reduced to a minimum. 

By solving the normalized governing equation together with the normalized initial and boundary 
conditions, an analytical solution can be derived as: 
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where J0 and J1 are Bessel functions of the first kind, and φn are the positive roots of: 
( )
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As described above, transient variations of the solute concentration in the single-reservoir radial diffusion 
test for the cylindrical specimen (Fig. 1 (c)) are expressed by multiplying the dimensionless solute 
concentration, c(ρ,τ), by the initial concentration in the source reservoir of C0. 

The initial concentration in the reservoir, C0, is irrelevant to the transient variations of solute 
concentration in both the dimensionless and the dimensioned time scales. In the dimensionless forms, the 
dimensionless time, τ, represents the actual time, t, and the specimen properties and dimensions (Eq. 7). 
In other words, the experimental time, t, for a certain specimen is represented by the dimensionless time, τ, 
independent of the other condition, i.e., the reservoir volume, Vr. On the other hand, the dimensionless 
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reservoir volume, βr, indicates the experimental condition, i.e., the reservoir volume, as well as the 
specimen properties and dimensions (Eq. 9). Accordingly, comparing the experimental durations in the 
dimensionless time scale between the different values of βr is equivalent to comparing the experimental 
durations in the actual time scale between different experimental conditions, assuming a specimen with 
certain dimensions and properties. 

Test interpretation 

As shown by Eq. 10, the transient variations of solute concentrations are nonlinear with respect to the 
effective diffusion coefficient and the capacity factor; however the solute concentrations between the 
reservoir and pore spaces in the specimen are balanced at the equilibrium state. When time elapses, the 
equilibrium state is established. The equilibrium concentration can be calculated by setting τ→∞ in Eq. 
10: 
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where ceq is the equilibrium concentration normalized with the initial concentration, C0. Using Eq. 12 and 
the equilibrium concentration, the capacity factor, α, can be estimated. Otherwise, the distribution 
coefficient, Kd, is estimated based on the mass balance consideration as in the batch sorption experiment 
[17]. The value of Kd is estimated by the following expression: 
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where ε and ρb are the porosity and bulk density of the specimen. 

As described above, the adsorptive property of the testing material might be estimated from the 
equilibrium concentration; however the experimental time would be significantly long when the testing 
material has a small diffusivity, as shown by Eq. 7. For that case, transient data analysis is useful because 
it might enable estimating both the diffusive and adsorptive values from the transient data. However, 
inverse analysis is required owing to the nonlinearity of the analytical solution with respect to the 
parameters of interest (Eq. 10). 

 
INVERSE ANALYSIS 

In this paper, the feasibility of inverse analysis for the radial diffusion tests is a main concern, and 
problems related to this are illustrated by using the single-reservoir radial diffusion test for a cylindrical 
specimen as an example. 

As described, an analytical solution to the single-reservoir radial diffusion test for a cylindrical specimen 
is nonlinear with respect to the parameters of interest during the transient phase. Even if the capacity 
factor can be estimated from the equilibrium concentration, the effective diffusion has to be inversely 
determined from the transient data. Accordingly, the parameter estimation should be performed with the 
inverse analysis by matching the functional model, i.e., the analytical solution, Eq. 10, with the 
observations, i.e., the transient variations of reservoir concentrations. 

However, in inverse analyses, it is often difficult to derive a unique result depending on the characteristics 
of the objective function or the inverse problem itself, and the quality of the parameter estimation is 
affected by the sensitivities of the measurement data as well as the other factors, such as the measurement 
and systematic errors, and computational methods used in the inverse analyses. Therefore, examining 
these problems with respect to the radial diffusion tests is indispensable for examining the feasibilities of 
the radial diffusion tests. 

In order to clarify the subjects to be discussed in the following sections, some basic concepts of inverse 
analysis are presented here, with emphasis on the aspects relevant to this study. 
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Objective function 

In inverse analyses, an objective function measuring the overall difference between observed data and the 
corresponding simulation results is minimized by adjusting parameters involved in the functional model 
(analytical solution in this study). According to Finstrele and Njita [18], the objective function is 
generally defined in the following form: 
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where ω is a loss function and yi is a function of the weighted residual: 
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where zi
* is one of m actual data points at a discrete point i in time and/or space, and zi is the 

corresponding variable calculated from the functional model. The parameter vector p of length n (<m) is a 
set of parameters to be estimated. The weighting coefficient σzi is the standard deviation of the 
measurement error.  

Separately from the direct minimization of Eq. 14, assuming that the measurement errors are normally 
distributed with mean zero and covariance matrix Czz and follow the maximum likelihood theory, the 
degree of likelihood that the parameter set, p, produces the measurement data, z*, is expressed as: 
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In order to estimate the parameter set, p, maximizing Eq. 16, the following negative log-likelihood or 
support criterion is used in the maximum likelihood estimation: 
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The minimization of Eq. 17 is equivalent to minimizing the sum of squares of weighted residuals: 
( )( ) ( )( )pzzCpzz −−= − *1*2

zz
TΧ . (Eq. 18) 

Eq. 18 is the objective function for the maximum likelihood estimation. Moreover, assuming a lack of 
correlation among measurement errors, the error covariance matrix reduces to a diagonal matrix that can 
be written as Czz=σ0

2·Vzz. For this case, the maximum likelihood estimation using Eq. 18 is equivalent to 
the weighted least square estimation directly minimizing the objective function, Eq. 14. Vzz is a positive 
definite diagonal matrix which contains information on the error structure of the measurements. Although 
σ0

2 can assume any positive value, it is convenient to set it to one and work with the actual covariance 
matrix Czz rather than Vzz. 

When different types of error distributions are assumed, different loss functions and estimators are 
selected as summarized by Finstrele and Njita [18] or Carrera et al. [19]. When prior information on the 
parameters of interest is available, the separately estimated values for the parameters can be included in 
the observed data, i.e., z*, to regularize the problem and constrain the estimation [20]. 

Minimization algorithm 

In inverse analyses associated with model identification and parameter estimation in the field of 
subsurface hydrology, gradient-based iterative algorithms have frequently been adopted for minimizing 
the objective functions (e.g., 17-22). Among the gradient-based methods, Newton-type minimization 
algorithms with quadratic approximation of the objective function, i.e., Gauss-Newton or Levenberg-
Marquardt algorithms, are preferred. In Newton’s method, the objective function is locally approximated 
by a quadratic form which allows iterative computation of an improved parameter vector pk+1 from a 
previous estimation pk as follows: 
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where k indicates the iterative step; Hk and gk are the Hessian matrix with n×n components and gradient 
vector of the objective function in n-dimensional parameter space, respectively. 

For the objective function defined as the sum of squares of weighted residuals, Eq. 19 can be expressed 
as: 
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where Jk is the Jacobian matrix of weighted residuals with m×n components, Jij=∂yi/∂pj; Gk is the Hessian 
matrix of weighted residuals with n×n components Gjj’=∂2yi/(∂pj∂pj’). The gradient vector of the objective 
function is expressed as gk=2·Jk

T·yk. 

The Gauss-Newton algorithm premises that the first-order term dominates the second-order term of the 
Hessian matrix in Eq. 20, which leads to the following approximation: 
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In the Levenberg-Marquardt algorithms the second-order term in Eq. 20 is approximated by an n×n 
diagonal matrix λk·Dk. Dk is composed of the diagonal components of Jk

T·Jk and its components are given 
by Djj=(Jk

T·Jk) jj. λk is a scalar that is changed during the iterative computation corresponding to the 
change in the value of the objective function. By introducing λk·Dk into Eq. 20, the following expression 
can be derived: 
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After each iteration, λk is either increased or decreased, depending on the change in the value of the 
objective function, S(p) (Eq. 14). When S(pk+1)>S(pk), λ is increased; when S(pk+1)<S(pk), λ is decreased 
in the next iterative step. When λk is large, the inverse matrix in Eq. 22 is forced into being diagonally 
dominant, so Eq. 22 becomes close to that for the steepest descent method: 

kk1k gpp ⋅−=+ a , (Eq. 23) 
where a is a constant. On the other hand, as λk approaches zero, Eq. 22 approaches Eq. 21. Thus the 
Levenberg-Marquardt method can be viewed as a flexible combination of the steepest-descent method 
and the Gauss-Newton method. 

A description of the robustness of each minimization algorithm is beyond the scope of this paper. It 
suffices to point out that the parameter vector, pk+1, is searched based on the gradient vector of the 
objective function, gk, in the gradient-based algorithms; thus the objective function should be smooth, 
meaning continuous and differentiable. When the objective function is the sum of squares, the objective 
function near the global minimum is close to parabolic with elliptical contour lines, which is 
advantageous to the Newton-type minimization algorithms with quadratic approximation of the objective 
function. However, searching the global minimum becomes significantly difficult for cases where the 
topology of the objective function away from the global minimum exhibits multiple local minima or 
points (including lines) at which the gradient vector become 0 or discontinuous. For those cases, the 
parameter vector, p, may be stuck in wrong points depending on the initial guess. In addition, the 
parameter estimation becomes nonunique when multiple parameter combinations produce the same value 
of the objective function close to that for the global minimum. In other words, it depends on the topology 
of the objective function whether the inverse problem is well- or ill-posed; this can also be said for the 
other minimization algorithms searching the optimum parameter set on the objective functions without 
the gradient vector, g. Therefore, examining the topology of the objective function is of fundamental 
importance for selecting an appropriate minimization algorithm as well as for knowing the uniqueness of 
the problem itself. On the other hand, parameter studies of the topologies prior to performing any 
experiments would provide meaningful information, i.e., whether the inverse problem can be well-posed 
or how the problem can be well-conditioned by appropriately selecting experimental conditions or 
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collecting the measurement data. Considering the importance of characterizing the objective function both 
in selecting the inverse analysis method and in conditioning the inverse problem by appropriate 
experimental design, the objective functions should preferably be evaluated prior to performing 
experiments, when theoretical or numerical analysis of the objective function’s concavity is feasible [e.g., 
23-25]. 

Calculation of parameter vector 

In inverse analyses based on Newton-type minimization algorithms, the parameter vector, p, at each 
iterative step is derived by solving one of Eqs. 20, 21, or 22. In the mathematical expressions, the 
parameter vector, p, seems to be calculated using the inverse matrix but in practice it is derived by solving 
algebraic equations without calculating the inverse matrix. At each iterative step, Eqs. 21 and 22 are 
formulated as linear algebraic equations. The solution of the linear algebraic equation can be derived by 
solving the problem as is, meaning directly solving the normal equation, or by a QR decomposition of the 
matrix in the normal equation. 

In the normalized form, Eq. 21 for the Gauss-Newton algorithm can be expressed as: 
k
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where J’k is the weighted Jacobian matrix of the functional model, zi, with m×n components, 
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where J”’k is a matrix with (m+n)×n components; y’k is a vector with m+n components involving vector 
yk from the 1-st to m-th components and zero in the other. 
When applying the QR decomposition to the above normal equations, Eqs. 21’ and 22” are reduced to the 
following equations: 

kk ypJ =⋅′ ∆ , (Eq. 21”) 

kk ypJ ′=′⋅′′′ ∆ . (Eq. 22”’) 

For accurate computation of the parameter vector, ∆p, the condition numbers of the matrices on the left 
hand sides of Eqs. 21’, 22”, 21”, and 22”’ should be taken into consideration [e.g., 26]. The condition 
number of a matrix can be cited as the measure of to what extent the inverse problem is well- or ill-posed. 
The condition number associated with the linear equation A·x=b is given by the following expression: 
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where κ(A) is the condition number of a matrix; µmax and µmin are maximal and minimal singular values, 
respectively, of A. From the viewpoint of numerical computation, the condition number could be thought 
of as the rate at which the solution, x, will change with respect to a change in b. Thus, if the condition 
number is large, even a small error in b may cause a large error in x. On the other hand, if the condition 
number is small then the error in x will not be much bigger than the error in b. Accordingly, a problem 
with a low condition number is said to be well-conditioned, while a problem with a high condition 
number is said to be ill-conditioned. For example, if the number of parameters is 2 and the weighted 
Jacobian matrices in Eqs. 21’, 22”, 21”, and 22”’ are derived as follows: 
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the condition numbers for JT·J and J result in orders of 1010 and 105, respectively. Accordingly, the QR 
decomposition working with J is advantageous. In addition, the roundoff errors due to singularity could 
be lowered by the QR decomposition rather than directly solving the normal equation. The condition 
numbers of JT·J and J become small when the differences in the orders of magnitudes of component 
values are small. Therefore, it should be meaningful for knowing or conditioning the weighted Jacobian 
matrix to examine its component values. 

As mentioned in the previous section, λ is decreased and close to zero near the minima. Thus Eqs. 22” and 
22”’ are forced into being Eqs. 21’ and 21”, respectively. Accordingly, the quality of computing the 
parameter vector near the minima could be known by evaluating J’T·J’ or the weighted Jacobian matrix J’. 

Sensitivity analysis 

For characterizing the weighted Jacobian matrix, an additional consideration is described here in light of 
the sensitivity analysis. 

Substituting the weighted residual, Eq. 15, into the Jacobian matrix J, the components of the weighted 
Jacobian matrix are expressed as: 
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where the components of the weighted Jacobian matrix J’ are the partial derivatives of the functional 
model, z(p), scaled by the standard deviation of the measurement error, σz, and ∂z/∂p is referred to as the 
sensitivity coefficient or traditional sensitivity coefficient. 

While the sensitivity coefficients are often evaluated to examine system responses to perturbations of 
parameters, they inherit fundamental information on the properties of matrices JT·J and J as seen in Eq. 
25, more precisely, the singularities of the matrices. For an extreme example, if the sensitivities of 
measurement data to one parameter are all zero, the matrices JT·J and J become singular and their inverse 
matrices cannot be defined from a mathematical viewpoint. In addition, the condition numbers of the 
matrices become infinite; and thus estimation of the non-sensitive parameter becomes unstable in 
numerical computation. 

Therefore, the sensitivities should be increased if possible; and thus sensitivity analysis prior to 
performance of the actual experiment has important consequences. In fact, sensitivity analysis has been 
conducted for the purpose of investigating appropriate test methods or experimental conditions to obtain 
parameter-sensitive data [e.g., 18-30]. If the weighted sensitivity coefficients for different parameters are 
significantly different in their orders of magnitude, conditioning the weighted Jacobian matrix is required 
for reducing the condition number of JT·J or J as described in the next section. 

For the sensitivity analysis, several sensitivity coefficients are available. 

In order to compare the sensitivities of the system responses to parameters with different units, the 
sensitivity coefficients in Eq. 25 are scaled by the standard deviations of both the parameters of interest, 
σpj, and the measurement data, σzi, as follows [e.g., 21,25]: 
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j
ij p

z
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z

p

∂
∂

⋅=
σ

σ
. (Eq. 26) 

The difficulty often faced in sensitivity analysis using Eq. 26 is the definition of the standard deviation of 
the parameters, σpj. When values of the parameter of interest are evaluated by separate experiments or 
their standard deviations are known, calculation of Eq. 26 is possible. However, assumptions should be 
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made about the standard deviations of the parameter values when this statistical information about the 
parameter values is not available. This is a typical situation encountered when estimating values of 
geological and geotechnical materials’ properties, determining the values of parameters included in 
constitutive law, or evaluating changes in parameter values with respect to changes in experimental 
conditions. 

For prior sensitivity analysis, other types of sensitivity coefficients, i.e., the traditional sensitivity, 
normalized sensitivity and logarithmic sensitivity coefficients, have been used in the field of subsurface 
hydrology as summarized in Kabala [26]. The traditional sensitivity coefficient is the partial derivative of 
the functional model without scaling and is expressed as ∂z/∂p. As seen in Eqs. 19 through 23 and Eq. 25, 
the traditional sensitivity coefficients are calculated at each iterative step in the gradient-based iterative 
minimization algorithms. The traditional sensitivity coefficient was also adopted to examine the effective 
experimental design and data sampling for one-dimensional advection-dispersion experiments by 
Knopman and Voss [27]. The normalized sensitivity coefficient was introduced into the field of 
subsurface hydrology by McElwee [28] according to Kabala [26] and expressed as p·(∂z/∂p). The 
normalized sensitivity coefficient is a variant of the traditional sensitivity coefficient. The normalized 
sensitivity coefficient is the traditional sensitivity coefficient scaled by the parameter of interest; and thus 
the influence of one parameter on the system response can be compared with the influence of another. 
The normalized sensitivity coefficient has been used in the dimensionless form by further scaling it by a 
reference value for measurement, such as the initial pulse in permeability tests [e.g., 29,30]. The scaled 
normalized sensitivity coefficient is expressed as (p/z0)·(∂z/∂p); where z0 is the reference value for the 
measurement data. The logarithmic sensitivity is defined as the measure of the influence that a fractional 
change in the parameter has on fractional changes in the output and is expressed as (p/z)·(∂z/∂p). The 
logarithmic sensitivity is similar to or can be viewed as a generalized form of the sensitivity coefficient 
defined by Eq. 26 in the light of scaling. While Eq. 26 measures the influence of the coefficient of 
variance (CV) of a parameter on the CV for a system response, the logarithmic sensitivity measures the 
influence that a relative change in a parameter has on the relative change in a system response. Although 
both the logarithmic sensitivity coefficient and the sensitivity coefficient defined by Eq. 26 can compare 
system responses with different units with respect to one or more parameters, which is not possible with 
the other sensitivity coefficients, the logarithmic sensitivity coefficient has an advantage over the 
sensitivity coefficient defined by Eq. 26 in that the logarithmic sensitivity coefficient can be calculated 
even when the statistical information of the parameters is not available. However, the logarithmic 
sensitivity coefficient may not be suitable when the functional model reaches zero or increases from zero 
because the logarithmic sensitivity coefficient becomes infinite in such cases. 

In the inverse analyses based on the gradient-based algorithms, the traditional sensitivity coefficients for 
each measurement time and/or point are calculated at each iterative step as seen in Eq. 25. Thus, direct 
evaluation of the traditional sensitivity coefficient weighted by the standard deviation of the measurement 
error (Eq. 25) would be useful in examining an experiment performed with a specific testing material and 
experimental condition. However, sensitivity analysis with dimensionality requires an enormous 
computational cost to draw a general idea for experimental design corresponding to various testing 
materials. Accordingly, sensitivity analysis that works with sensitivity coefficients without dimensionality, 
namely the scaled-normalized sensitivity coefficient or the logarithmic sensitivity coefficient, would be 
efficient when a general idea of the feasibility of a new test and the characteristics of the weighted 
Jacobian matrix are being drawn from the sensitivity analysis. 

Characterization of weighted Jacobian matrix 

Using the scaled normalized sensitivity coefficient, the weighted Jacobian matrix J’ can be expressed as: 
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where the traditional sensitivity coefficients in Eq. 25 are replaced with the normalized sensitivity 
coefficient scaled by the reference value, z0, and the parameters of interest. In Eq. 25’, each component is 
expressed by multiplying the scaled normalized sensitivity coefficient by the inverses of the parameter of 
interest and σzi/z0. When a measurement with a fixed accuracy, e.g., a concentration measurement by an 
ion-selective electrode, can be assumed, σzi/z0 becomes constant and identical to the coefficient of 
variance (CV) for measurement. 

When the coefficient of variance (CV) for measurement changes with respect to a change in the 
measurement value, e.g., a concentration measurement by chromatography, Eq. 25 can be rewritten using 
the logarithmic sensitivity coefficients as follows: 
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where each component is expressed by multiplying the logarithmic sensitivity coefficient by the inverses 
of the parameter of interest and σzi/zi. σzi/zi is the coefficient of variance (CV) for measurement in this case. 

As seen in both Eq. 25’ and 25”, the condition numbers of the Jacobian J’ are affected by the coefficient 
of variance (CV) for measurement as well as the values of the parameters of interest and the sensitivity 
coefficients. However, the coefficient of variance (CV) has different meanings in Eq. 25’ and 25” and the 
sensitivity coefficients used in each expression are also different. This means that the way of 
characterizing the weighted Jacobian matrix should be selected depending on the type of coefficient of 
variance (CV) for measurement. Specifically, when the coefficient of variance (CV) for measurement is 
constant for all measurement values, the weighted Jacobian matrix should be examined by the normalized 
sensitivity coefficient; when the coefficient of variance (CV) for measurement depends on the 
measurement value, the logarithmic sensitivity coefficient is appropriate. It should be noted that Eqs. 25’ 
and 25” are used for characterization of the weighted Jacobian matrix, Eq. 25; for calculation of the 
parameter vector in the inverse analysis, the weighted Jacobian matrix is calculated by Eq. 25. 

In the above, it was shown that the components of the weighted Jacobian matrix can be decomposed into 
the sensitivity coefficient, the coefficient of variance (CV) for measurement and the parameter of interest. 
Thus, the importance of each measurement point in time and/or space can be evaluated by examining its 
sensitivity coefficient and CV assuming the values of the parameter of interest. As shown, the sensitivity 
coefficient without dimensionality is more suitable than those requiring dimensioned parameters for 
general characterization of the weighted Jacobian matrix. In addition, the scaled normalized and 
logarithmic sensitivity coefficients can be calculated without the dimensioned parameter. Furthermore, 
the coefficient of variance (CV) for measurement can be known or supposed in selecting the measurement 
device. Accordingly, the property of the weighted Jacobian matrix, more precisely the condition number 
defined as Eq. 24, can be evaluated assuming the values of the parameters of interest. 

In Eq. 25’ and 25”, the parameter values are unknown prior to the experiments. However, differences in 
the orders of magnitude between each parameter value can be estimated to some extent. When the 
differences in the orders of magnitude between each parameter value are significant, meaning that the 
order of magnitude of a specific parameter value, pj, is significantly smaller than those of the other 
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parameters, the condition number become large as mentioned in the previous section using Eq. 24. We 
note in passing that, when the measurement values reach zero or start from zero, the weighted Jacobian 
matrix should be characterized by the scaled normalized sensitivity coefficient rather than the logarithmic 
sensitivity coefficient, even if the coefficient of variance (CV) for measurement varies with the 
measurement value. In such a case, the CV for measurement should be approximated as the CV for 
measurement with a constant accuracy. Otherwise, the collection of measurement data with values close 
to zero should be avoided. 

Conditioning of weighted Jacobian matrix 

As described in Eq. 25’ and 25”, a well-conditioned weighted Jacobian matrix can not be ensured only by 
sensitivity coefficient values; the condition number is also affected by the coefficient of variance (CV) for 
measurement as well as the value of the parameter of interest. When the conditional number is expected 
to become large, conditioning of the weighted Jacobian matrix is needed. For example, this might be done 
by collecting parameter-sensitive data and/or decreasing the coefficient of variance (CV) for measurement, 
i.e., increasing the measurement accuracy by calibrating the measurement device more sensitively to the 
ranges over which the data is measured, or by using a more precise measurement device or method. 
However, when the differences in the orders of magnitude of the parameter values are significant, the 
condition number inevitably becomes large. In such a case, additional treatment of the weighted Jacobian 
matrix J’ would lower the condition number. One way of lowering the condition number is to use log(pj) 
as an alternative parameter to pj; where pj is the parameter having a significantly smaller value than the 
other parameters. In this treatment, the components for the parameter pj in the weighted Jacobian matrix 
are replaced with those for log(pj) and minimization of the objective function is performed with the 
rearranged weighted Jacobian matrix. 

The traditional sensitivity coefficient for log(pj) can be calculated by numerical differentiation of the 
functional model as performed by Finsterle and Persoff [18]. However, for the functional models defined 
as analytical solutions, we introduce the traditional sensitivity coefficient for log(pj) as follows: 
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∂ . (Eq. 27) 

As indicated by Eq. 27, the traditional sensitivity coefficient for log(pj) can be derived by dividing the 
normalized sensitivity coefficient by log(e)=0.43… . Therefore, calculation of the traditional sensitivity 
coefficient is more straightforward than numerical differentiation for the functional model defined as the 
analytical solution. Substituting Eq. 27 into Eq. 25, the weighted Jacobian matrix can be written as 
follows: 
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The redefined weighted Jacobian matrix should be further examined by Eq. 25’ or 25” depending on the 
coefficient of variance (CV) for measurement. When the condition number is still large, the other 
parameter with a small order of magnitude might be transformed into a base-10 logarithmic value. 
Depending on the orders of magnitude of the parameter values, all components in the weighted Jacobian 
matrix in Eq. 25 might be defined as base-10 logarithmic parameters. 

When measurement data with different units are obtained in a single experiment, the logarithmic 
sensitivity would be appropriate. However, the measurement data in the single-reservoir radial diffusion 
test being addressed in this paper is only the reservoir concentration; thus the normalized sensitivity 
coefficient scaled by a reference value can also be applied. The method of characterization of the 
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weighted Jacobian matrix is selected depending on the coefficient of variance (CV) for measurement. In 
the following, provided that the concentration is measured with a fixed accuracy, the normalized 
sensitivity coefficient scaled by a reference value is adopted for evaluation of the single-reservoir radial 
diffusion test for a cylindrical specimen. 

 
NUMERICAL EXAMINATION 

In diffusion experiments, the testing materials and tracers are first selected or given. Accordingly, the 
diffusion experiment should be designed appropriately for both the testing material and the tracer. The 
experimental conditions, such as the dimensions of the specimen and reservoir, should be selected to 
maximize the measurement resolution and the accuracy of the test interpretation while minimizing the 
experimental duration. 

The experimental duration is an important factor affecting the feasibility of the experiment, as the 
experimental duration has been a main concern in selecting experimental methods for 1D laboratory 
diffusion experiments [e.g., 12-14]. In the previous section, the analytical solution to the single-reservoir 
radial diffusion test for a cylindrical specimen was derived in the dimensionless form so as to compare the 
experimental durations of different experimental conditions, i.e., the source reservoir volume, for a 
specimen with certain diffusive and adsorptive properties and dimensions. On the other hand, inverse 
analysis of transient data is needed when the experimental duration is very long. For successful parameter 
estimation by inverse analysis, prior sensitivity analysis is necessary. 

In order to examine the dependences of both the experimental duration and the sensitivity on the 
experimental conditions, a series of numerical examinations are conducted using the analytical solution in 
this section. 

Transient variation of reservoir concentration 

Type curves of transient variations of solute concentrations in the source reservoir were calculated by 
Eq.10 setting ρ=1 (Fig. 2). The dimensionless reservoir volume, βr, was varied from 10-2 to 101 to cover 
various experimental conditions. As a whole, the solute concentrations reach the equilibrium state before 
τ=1. Comparing the equilibrium concentrations between different values of βr, the concentration tends to 
increase as the value of βr increases. In other words, no drastic change in the reservoir concentration is 
expected when the value of βr is set too high. In that case, it might be difficult to accurately measure small 
variations in the concentrations that depend on the resolution of the solute detection. Considering the 
above, a small βr is advantageous for measuring the transient variations of solute concentration in the 
source reservoir. 

Sensitivities of reservoir concentration to De and α 

The normalized sensitivity coefficients of the reservoir concentration can be evaluated by the following 
expressions coupled with Eq. 10 for the effective diffusion coefficient and capacity factor: 
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where the normalized sensitivity coefficients are scaled by the initial concentration in the source reservoir, 
C0. In the simulations, the values for βr were varied as in the previous section. 

Transient variations in the sensitivities to the effective diffusion coefficient, De, calculated by Eq. 28 are 
shown in Fig. 3. As a whole, the sensitivity to De gradually increases as time elapses and decreases after 
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the maximum has been reached. The smaller the value of βr, the earlier the maximum sensitivities appear, 
with larger absolute values. At the equilibrium state, the sensitivities to De become zero as reasoned by 
Eqs. 10 and 28. 

On the other hand, the sensitivities to the capacity factor, α, calculated by Eq. 29 showed different trends 
(Fig. 4). The time series variation of the sensitivity to α is composed of those for the transient and 
equilibrium states. In cases where βr is less than 10-1, the sensitivity coefficients have almost identical 

10-6 10-5 10-4 10-3 10-2 10-1 100 101

Dimensionless time, τ

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 re
se

rv
oi

r c
on

ce
nt

ra
tio

n,
 c

(1
,τ

)

β r=0.01

Fig. 2. Transient variation of normalized reservoir concentration.

β r=0.1

β r=1

β r=10

10-6 10-5 10-4 10-3 10-2 10-1 100 101

Dimensionless time, τ

0.00

0.05

0.10

0.15

0.20

0.25

 D
e

C 0
 ⋅  

 ∂C ∂D
e

β r=0.01

Fig. 3. Transient variation of normalized sensitivity coefficient of reservoir
           concentration to De scaled by the initial reservoir concentration, C0.

β r=0.1

β r=1

β r=10



WM’07 Conference, February 25 - March 1, 2007, Tucson, AZ 

  

values at their maxima, while those for the equilibrium state vary depending on the values of βr. In 
addition, the maximum sensitivity during the transient phase is larger than that for the equilibrium state. 
As the values of βr become larger than 10-1, the sensitivity to α becomes large as time elapses and shows 
its maximum value at the equilibrium state. The largest absolute value of sensitivity to α is -0.25 for the 
case with βr=0.5 as calculated using Eqs. 12 and 29. For the cases with βr larger than 0.5, the maximum 
sensitivity to α tends to be small as the value of βr becomes large. As a whole, the normalized sensitivity 
coefficients to α tend to have large values during the late portion of the transient state. 

DISCUSSION 

In the previous section, it was shown that the dimensionless reservoir volume, βr, affects both the 
experimental duration and the sensitivities of the reservoir concentration. In this section, the experimental 
design for expediting experiments and the characteristics of the Jacobian matrix, J, and the matrix, JT·J, 
are discussed. 

Experimental duration 

As indicated by Eq. 7, regardless the experimental conditions, the experimental duration is inversely 
proportional to the effective diffusion coefficient, De, and proportional to the capacity factor, α. This 
means that the experimental duration is affected by both De and α and tends to be long when De and α 
become small and large, respectively. The distribution coefficient, Kd, is implicitly included in the 
capacity factor, α (ε+ρs·Kd), and tends to be larger when the tracer is more sorptive. In other words, the 
more sorptive the tracer, the larger the value of α and the longer the duration of the experiment. 

On the other hand, the use of a sorptive tracer, giving a large α, also makes a difference in obtaining 
drastically changing concentration data as shown in Fig. 2. If βr becomes small due to the use of a 
sorptive tracer (Eq. 9), relatively large variations in the solute concentrations can be expected over a 
shorter experimental period than for the cases with a large βr. This would be helpful for terminating the 
measurement during the transient state if the values of the parameters can be inversely determined from 
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the transient data. However, depending on experimental conditions other than the tracer property, the 
experiment may last long in spite of one’s expectations, even if a strongly sorptive tracer is used. This is 
because βr includes other parameters, such as the dimensions of the specimen and reservoir. Accordingly, 
it is important to pertinently select the dimensions of the specimen and reservoir so as to make βr small. 

The capacity factor, α, is unknown prior to performance of the experiments. However, its minimum value 
can be estimated if the porosity is known and zero sorption is assumed. In addition, the maximum value 
of the capacity factor can be inferred when the distribution coefficient, Kd, and the bulk density, ρb, as 
well as the porosity, ε, of the testing material are known or supposed from similar materials. Based on the 
minimum and maximum values of the capacity factor, the maximum and minimum values of βr can be 
approximated by Eq. 9, which enables comparison of the maximum and minimum experimental durations 
for different experimental conditions as shown in Fig. 2. Thus, when selecting the experimental 
conditions, it is recommended to approximate the value of the dimensionless reservoir volume, βr, by 
using the porosity, density and distribution coefficient of the testing material if they are available. 

Parameter sensitivity and weighted Jacobian matrix 

As shown by Eqs. 12 and 13, the capacity factor, α, and/or the distribution coefficient, Kd, can be 
estimated from the equilibrium concentration separately from the transient analysis. However, the actual 
experimental duration for establishment of the equilibrium state might be impractically long when the 
effective diffusion coefficient of the specimen, De, is very small. The practical way of parameter 
estimation in such a case would be to inversely determine the values of De and α from the measured 
concentrations during the transient phase. If the Newton-type minimization algorithms using the objective 
function defined as the sum of the squared residuals between the measured and calculated concentrations 
are adopted, parameter-sensitive data is necessary as discussed using Eqs. 20 through 25”’. 

When βr is greater than 10-1, the sensitivity to De tends to be relatively small as the value of βr becomes 
large, while that to α tends to be large (Fig. 3 and 4). On the other hand, when βr is less than 10-1, the 
sensitivities to both the effective diffusion coefficient, De, and the capacity factor, α, are almost equally 
large until the maximum sensitivities appear and almost same maximum values are shown for different 
values of βr. Accordingly, a small βr is advantageous for obtaining measurement data that is almost 
equally sensitive to both the effective diffusion coefficient and the capacity factor. 

As a whole, the sensitivity can be seen in all the simulated cases, which would satisfy the condition for 
the existence of the inverse matrices in Eqs. 20 through 22. However, the quality of the parameter 
estimation might not be ensured depending on the condition numbers of the matrices in Eqs. 21’, 22”, 21”, 
and 22”’. Here, the condition numbers of those matrices are discussed again focusing on the matrix J’T·J’ 
and the Jacobian J’ in the inverse analysis of the radial diffusion tests. Now that the scaled normalized 
sensitivity coefficient is available, the weighted Jacobian matrix J’ (Eq. 25”) for the diffusion experiment 
can be expressed as: 
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where Ci and σCi are the i-th measured concentration and the standard deviation of the measurement error. 

As shown in Figs. 3 and 4, the scaled normalized sensitivity coefficients to De and α are in the minus one 
order of magnitude. Providing that the values of σCi/C0 are minus three orders of magnitude, the orders of 
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magnitude of the component values for each parameter depend on the parameter values themselves. For 
this example, the above expression can be approximately written as: 

αα for  row
for  row

    value1 of magnitude of orders
 value1 of magnitude of orders
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In general, the orders of magnitude of De values are significantly smaller than those of α for geological 
and geotechnical materials, and differences in the orders of magnitude between De and α values would be 
around ten. Supposing that the values for De and α are 10-10 and 100, respectively, the condition numbers 
of J’T·J’ and J’ can be calculated as 1020 and 1010, respectively (Eqs. 24 through 25”’). In addition, since 
the values of the components for α in the weighted Jacobian matrix are significantly smaller than those for 
De, computation of the α value becomes susceptible to roundoff errors and perturbations in values on the 
right hand side of Eqs. 21’, 22”, 21” and 22”’, i.e., the measurement error. When the roundoff error is 
significant, the parameter estimation might be improved by working with the weighted Jacobian matrix 
defined by log(De) or both log(De) and log(α) as alternative parameters. If the condition number is 
successfully lowered, the error in the parameter values will not be much larger than the error in the 
measurement. 

Experimental conditions 

As already mentioned, βr is the key parameter for obtaining drastically changing concentration data and 
parameter-sensitive data with respect to both the effective diffusion coefficient and the capacity factor. βr 
includes three adjustable parameters, i.e., the reservoir volume and the radius and length of the specimen 
(Eq. 9). Thus, in order to expedite the experiment and obtain parameter-sensitive data, the dimensions of 
these adjustable parameters should be selected so as to make the value of βr small. Another adjustable 
parameter prior to commencement of experiments is the initial concentration in the source reservoir, C0, 
which directly affects the measurement accuracies. For selection of these adjustable parameters, the 
general considerations are described as follows: 
� It is better to keep the specimen radius short because the actual experimental time is proportional to 

the square of the specimen radius (Eq. 7). If the specimen radius is too large, t becomes long for a 
certain value of τ, which is equal to the extension of the transient phase. 

� The reservoir volumes should not be set too small when the reservoir solution is sampled for 
concentration measurement. This is because the loss in solution volume by sampling enlarges the 
discrepancies between the actual experiments and the analytical models assuming constant volumes 
for the reservoir during experiments. 

� The length of the specimen can be set to be arbitrarily large without any theoretical limitations. 
However, a long specimen enlarges the reservoir volumes surrounding the specimen, which might be 
a disadvantage for keeping the solute concentration constant in the reservoir. However, this problem 
would be overcome by stirring the solution or by other treatment. 

� The magnitude of the change in the solute concentration becomes small when the value of βr is large 
(see flat line in Fig. 2). In such a case, it might be difficult to accurately measure small variations in 
concentrations, depending on the type of concentration measurement and its resolution, which should 
be considered in selecting the reservoir volume and the measurement device. 

� The initial concentration in the source reservoir, C0, is proportional to the magnitude of the 
measurement data. Thus its value should be set appropriately, taking the measurement resolution and 
measurable range of the concentration into consideration. 

CONCLUSION 

Evaluation of the directional diffusivities and adsorptive properties of natural barrier materials is of 
fundamental importance in the design and assessment of geological disposal of hazardous contaminants 
including radioactive nuclear wastes. 
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In order to facilitate estimation of the anisotropic diffusivity considered as a 2D tensor, a single-reservoir 
radial diffusion test for a cylindrical specimen was proposed in this study. The proposed test would enable 
doubly testing a cylindrical specimen, by both radial and 1D diffusion tests, which would provide better 
understanding of the directional diffusivity of materials with geometric orientation of pore structures, 
especially preferentially layered sediments. 

The feasibility of the proposed radial diffusion test was examined from the viewpoint of experimental 
conditions for shortening the experimental period and increasing parameter sensitivities of the 
measurement data. A series of examinations showed that the use of sorptive tracer is advantageous for 
both obtaining measurement data that drastically changes during the transient state and increasing 
parameter sensitivities. However, these also depend on the selected experimental conditions, such as the 
dimensions of the specimen and reservoir. The effects of the tracer property and the other experimental 
conditions can be represented by the dimensionless reservoir volume defined as the ratio of the reservoir 
volume over the adsorptive capacity of the specimen. Therefore it is important to evaluate the value of the 
dimensionless reservoir volume, based on the available information for the testing material and the tracer, 
when designing experiments. 

When the effective diffusion coefficient of the testing material is very small, the experimental duration for 
establishment of the equilibrium state becomes very long. A practical way of parameter estimation in such 
a case is inverse analysis of the transient data. In inverse analysis, a well-conditioned weighted Jacobian 
matrix is indispensable for accurately determining the values of the parameters of interest. A series of 
theoretical and numerical examinations revealed that the weighted Jacobian matrix for the proposed test is 
not necessarily well-conditioned, owing to differences between the orders of magnitude for the values of 
the effective diffusion coefficient and the capacity factor. The component values for the capacity factor, α, 
in the weighted Jacobian matrix tend to be significantly lower than those for the effective diffusion 
coefficient, De. Thus, when compared to the De value, computation of the α value tends to be more 
susceptible to roundoff errors, due to the singularity of the weighted Jacobian matrix. When the roundoff 
error is significant, the parameter estimation might be improved by working with the weighted Jacobian 
matrix defined by log(De) or both log(De) and log(α) as alternative parameters. If the condition number is 
successfully lowered, the error in the parameter values will not be much larger than the error in the 
measurement.  

In this study, ways of shortening the experimental duration and gaining parameter sensitivities were 
shown. However, several problems related to the inverse analysis have not been examined for the 
proposed test method. These should still be examined to clarify the feasibility of the proposed test. The 
problems are as follows. The uniqueness of the estimation results has not been guaranteed. In the 
gradient-based minimization algorithms, the parameters are iteratively searched along with the surface of 
the objective function on the parameter search domain; thus the shape of the objective function directly 
affects the uniqueness of the inverse analysis result. From the viewpoint of modeling, discrepancies 
between the test procedures and the analytical model introduce systematic errors into the measurement 
data, which directly affects the reliability of the estimation results. Specifically, sampling the solution 
from the reservoir for concentration measurements reduces the reservoir volume assumed to be constant 
in the analytical model. The systematic error caused by sampling might introduce significant errors in the 
parameter estimations. In addition, the uncertainty of the parameter estimation related to measurement 
error has not been examined. These problems related to the proposed diffusion test are currently being 
examined. 
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