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ABSTRACT 
 
To date, performance assessments of the consequences of a volcanic eruption at Yucca Mountain have 
assumed that all fuel that comes into contact with erupting magma disintegrates as a result of physical 
abrasion and forms particles of respirable size that are entrained within larger droplets of magma which 
erupt into the air. It has been assumed that the spent fuel remains a distinct solid phase at all times, but 
this assumption requires re-examination. Uranium oxides do not melt at the temperatures of basaltic 
magmas, but the solubility of UO 2  in basaltic magma is approximately 20% by weight.  For small 
particles, the rate-limiting process in dissolution will likely be diffusive mass transfer away from the 
surface of the solid particle.  We calculated the dissolution time of the largest respirable particle, with 
diameter of 10 µ m, for a range of reasonable diffusion constants and obtained a value between 2.1 sec 
and 21 sec. Consequently, small respirable particles of spent fuel that are formed when magma intrudes 
into a repository can be expected to dissolve into the magma before reaching the surface. Because 
dissolution time varies with the square of the particle radius, 1-mm particles will have a dissolution time 
of 6 hours to 2 days, and larger particles will dissolve even more slowly. Thus, respirable particles of 
spent fuel will dissolve into the magma, but larger pieces of fuel will remain solid. The net effect is that 
respirable ash particles will be formed entirely by solidification of small droplets of magma and will be 
depleted in refractory spent fuel components compared to the average composition of the erupted 
material.  
 
INTRODUCTION 
 
When the safety of the proposed HLW repository at Yucca Mountain, Nevada, is analyzed, one of the 
major exposure pathways that must be considered is dispersal of spent fuel in the atmosphere during a 
volcanic eruption. In analyses of this pathway, the largest contribution to dose during the first 2000 years 
after emplacement is due to inhalation of resuspended radioactive particles.[11] Only that portion of the 
radioactive inventory which is dispersed into the atmosphere as particles of respirable size (less than 10 
µ m diameter) contributes to such doses.  
 
To date, performance assessments have assumed that all fuel that comes into contact with erupting 
magma disintegrates as a result of physical abrasion and forms solid particles which are, when loose, of 
respirable size. This assumption is based on experimental studies of the grinding of oxidized spent 
fuel [8]. (Note that experimental grinding of unoxidized UO 2  produces particles with an average 
diameter of 20 µ m, which is larger than respirable size.)  
 
The performance assessments assume that all of the abraded fuel particles are entrained within larger 
droplets of magma which erupt into the air. During this process, the spent fuel is assumed to remain a  
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distinct solid phase at all times. However, assumptions about the size distribution of the ash droplets have 
varied:  
 

• In the ASHPLUME model, which both DOE and NRC have used to calculate how far the ash 
particles travel, a probabilistic formula is used to compute the amount of spent fuel incorporated 
within ash particles of any given size.  

 
• In calculations of human inhalation and ingestion rates, the TSPA-SR [11] assumes that one-third 

of the spent fuel is contained in particles of less than 10 µ m diameter and the remaining two-
thirds is contained in particles of between 10 and 100 µ m diameter.  
 

Performance assessments can be improved by considering interactions between liquid magma and spent 
fuel while they are in contact. Such contact is to be expected because the large mass and thermal inertia of 
waste packages will prevent rapid disintegration of waste containers that may come into contact with hot 
gases during the initial moments of a volcanic eruption. Container failures can be expected only after 
contact with liquid magma, which would have a much greater volumetric heat capacity and a much longer 
residence time in repository drifts than the erupting gases.  
 
 
The melting points of uranium oxides are far above the 1200 o C  temperatures of typical basaltic 
magmas. However, the solubility of UO 2  in basaltic magma has been measured as approximately 20% by 
weight [13]. This implies that a 10-µ m-diameter spherical particle of UO 2  coated by a 7.9-µ m-thick 
shell of magma can completely dissolve in the magma. (The computation assumes that the UO 2  particle 
is 4 times denser than the saturated solution of UO 2  in magma.)  
 
How much time does it take for such a particle to dissolve after it comes into contact with the magma? 
Most likely, the rate-limiting process will be mass transfer away from the surface of the solid particle. 
The distance scale is sufficiently small that diffusion is likely to be the dominant mass transfer 
mechanism.  
 
MATHEMATICAL FORMULATION 
 
The dissolution of a solid sphere is a well-known mathematical problem for which no exact analytical 
solution is available. The governing equation is  
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and the location ( )a t  of the moving boundary is given by the Stefan condition  

( )r a t

da D C
dt S rρ =

∂ =  − ∂ 
  (Eq. 2) 

with  
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In these equations, D  is the diffusivity and S  is the solubility of UO 2  in magma, 0a  is the initial radius 
of the solid particle, and ρ  is the density of solid UO 2 . Note that the same equations describe the 
melting of a solid sphere, whose temperature is initially at the melting point, surrounded by warmer 
liquid [2].  
 
The moving boundary condition makes this problem very difficult to solve analytically. Carslaw and 
Jaeger [2], on p. 295, evaluate the growth of a solid sphere in a supercooled liquid (equivalent to 
precipitation from a supersaturated solution). But their result is approximate, to use it one must find the 
roots of a non-linear algebraic equation involving error functions and exponentials, and in any case the 
formula is not applicable to a solid melting in warmer liquid (equivalent to dissolution in an 
undersaturated liquid).  
 
 
Rough estimates of melting or dissolution time are available. These can be expressed in terms of a 
characteristic time,  

2
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τ = ,   (Eq. 3) 

which is interpreted physically as the time after which the root-mean-square displacement of a diffusing 
particle is 0a  [9].  
 
One such estimate is obtained by the “quasi-static approximation” which approximates the temperature 
(or solute concentration) in the liquid by the solution for a fixed boundary [5]. With this approximation, 
one finds that ( ) 0a t =  at  

( )St
S

τ ρ −
= .   (Eq. 4) 

However, the quasi-static method is only accurate in the limit as η ≡ S/(ρ-S) 0→  , and therefore is not 
reliable for our problem where η= 0.25. 
 
An alternative estimate, which is more physically based, is obtained by observing that a spherical solid 
particle of radius 0a  can be dissolved in a magma sphere of radius 1 3

0 ( )a Sρ // . The time required for the 
solute to mix into this volume of liquid is the time that a solute particle travels a root-mean-squared 
distance equal to the radius of the magma sphere, or  
 

2 3( )t Sτ ρ /= / .   (Eq. 5) 
 
The approximate formulas (4) and (5) disagree and there is no clear reason for preferring either of them. 
A numerical solution of the governing equations is therefore very much to be desired.  
 
The challenge to any numerical solution is resolving the moving boundary (2). Boundary conditions must 
be applied at a node or interface of a finite-difference or finite-element grid to be exact, and this is 
impossible with a moving boundary. If one tries to approximate the moving boundary, numerical errors 
are unavoidable and their magnitude is hard to quantify. For this reason, it is highly desirable to transform 
the governing equation in such a way that the boundary is stationary.  
 
Numerical methods used for tracking arbitrarily shaped interfaces are classically categorized as either 
surface tracking (Lagrangian) methods or volume tracking (Eulerian) methods. In surface tracking 
methods the domain is discretized using a grid that continuously adapts to the shape of the interface. Grid 
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rearrangement and motion terms must be incorporated since in this case the grid becomes distorted and 
must be regenerated each time. This can also affect the accuracy of the solver. The volume tracking 
methods employ a fixed grid and hence the shape of the interface is not explicitly tracked but is 
reconstructed from the properties of appropriate field variables. The discretization process is simplified in 
this case, but when the interface is arbitrarily shaped, improved resolution in the regions where there are 
sharp gradients requires local iterative refinements [12]. Most recently, combined Lagrangian-Eulerian 
methods, employed frequently in fluid mechanics, have been applied to moving boundary problems.  
 
For one-dimensional problems, an alternative to tracking the front is to fix the boundary with a 
transformation of coordinates. Crank [4] reviews several transformations and solution methods starting 
with Landau’s[6] transformation and its solution by Crank[3]. In the present study the space coordinate is 
transformed using the substitution:  
 

( )u r a t= − ,   (Eq. 6) 
 
which yields the boundary condition  
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The time derivatives of C  in the two coordinate systems are related by  
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Inserting (6) and (8) into (1) yields a pair of coupled equations in the transformed coordinates u  and t  
that can be solved by finite differences:  
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The initial radius of the UO 2  sphere is 0a . Equations (7), (9) and (10) as well as the initial 

condition and boundary condition at r →∞  are nondimensionalized with the characteristic length scale 

0a  and the characteristic time scale 2
0 2a Dτ = / , which was previously defined in Eq. (3). The 

concentration is normalized by the solubility of UO 2 , S . These substitutions yield the following 
dimensionless equations:   
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where again , η ≡ S/(ρ-S).   As in Crank [4] and Segal et al.[10], the diffusion coefficient is used to define 
the characteristic time scale and does not explicitly appear in the nondimensionalized equations.  
 
The governing equations are solved using central differences in the transformed space dimension, u, and a 
forward difference in time. For the Stefan condition on the boundary, a second order backward difference 
scheme: [ 3 ( ) 4 ( 1) ( 2)] (2 )C i C i C i u− + + − + / ∆å å å å  is used to evaluate the concentration gradient at 
u å =0. An iterative procedure is used to ensure that the solution has converged at each time step which is 
typically achieved in 2-3 iterations. In this initial study, a uniform grid was used, however the continuing 
work employs nonuniform grids and higher order differencing schemes. The results of the latter studies 
will be reported at another time.  
 
 
RESULTS 
 
As discussed above, the solubility of UO 2  in basaltic magma has been measured as 20% by weight. Let 

us adopt for the density ρ  of UO 2  a value of 12 g/cm 3  and for the density of basaltic magma 

2.526 g/cm 3 . An ideal mixture of 5% by volume of UO 2  and 95% by volume of basalt contains 20% 

UO 2  by weight and has a density of 3 g/cm 3 . The solubility S  of UO 2  is thus 0.6 g/cm 3 .  Hence the 
value of  η ≡ S/(ρ-S) =0.25. 
 
While D  has not been measured directly, it can be inferred from the measured diffusion constants of 
several other cations dissolved in basaltic magma. Such data have been compiled by Brady [1]. Adjusting 
these measurements by the ratios between the aqueous diffusion constants of these cations and the 
aqueous diffusion constants of water [7], one finds that the diffusion constant of UO 2  in basaltic magma 

at 1200 o C  lies between 82 10−×  and 72 10−×  cm 2 /s.  These values can be inserted in the formulae (4) 
and (5) to obtain initial order-of-magnitude estimates of particle dissolution times. The largest respirable 
particle has a diameter of 10 µ m. Substituting 4

0 5 10a −= ×  cm into (3) gives a range of characteristic 
times τ  from 0.625 s to 6.25 s. As estimated by Eq. (4), the dissolution time of the largest respirable 
particle falls between 2.5 s and 25 s. As estimated by Eq. (5), it falls between 1.83 s and 18.3 s.  
 
Because in a numerical analysis the grid cannot have infinite size, a preliminary sensitivity analysis was 
conducted to determine the size of the modeled problem domain for grids with total lengths ranging from 

02 0 a. ×  to 010 0 a. × . The aim was to to determine how large a domain was needed to accurately 
approximate u →∞ . The location of the moving boundary as a function of time for several test-grids  
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demonstrated that the numerical method was not sensitive to the length of the domain beyond a distance 
of 04 0 a. × . Hence the grid with outer boundary at 08 0 a. ×  was used for the remainder of the study.  
 
The results of the numerical solution are presented in Figures 1-3. Figure 1 shows the dimensionless 
concentration C å  versus dimensionless radial position for at several time steps during the calculation. 
Figure 2 shows the dimensional results for the case 72 10D −= ×  cm 2 /s The shifting location of the 
boundary is clearly captured using the simple transformation given in Equation (6).  

 
Fig. 1  Evolution of dimensionless concentration, D=2.0 x 10 7−  

 

 
 

Fig. 2  Dimensional Concentration 
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The dissolution time in dimensionless coordinates was calculated to be 3 289t = .å . This yields a 
dissolution time for the 72 10D −= ×  case of 2.1 seconds and for the 82 10D −= ×  case 21 seconds. 
These times fall between the dissolution times predicted by the two rough approximations, Equations (4) 
and (5) as illustrated in Figure 3.  
 
  
 

 
Fig 3  Dissolution Times 

 
Validation of the numerical solution utilized the limiting behavior of equations (11) and (12) for 

/( )S Sη ρ= −  << 2.  In this case, Eq. (12) shows that the rate of change of a(t) is small and the term 
multiplying η in Eq. (11) becomes negligible.  This results in the steady state equation (Laplace’s 
Equation) for the potential around a charged sphere whose solution is C=a/r.  Applying the steady state 
solution in Eq. (12) gives ' 1/r aC a= = −  so that the evolution of a behaves as / / 2da dt aη= − . 

Integration of this equation gives 2 / 2 / 2a tη= −  + const. so that the elapsed time from a=1 to a=0 is 
simply 1/η .  Figure 4 illustrates this limiting behavior for η=0.005.  There is a short initial phase of rapid 
dissolution while the concentration profile relaxes from the initially infinite gradient at the particle surface 
to the C=a/r steady state.  Thereafter, da/dt is indeed proportional to 1/a as indicated by the linear slope.  
The total dissolution time is t* =207 which is very close to the expected limiting value of 1/ η =200.  
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Fig. 4  Limiting behavior for η = 0.005 

 
CONCLUSIONS 
 
The calculated dissolution time of 2.1 s to 21 s implies that small respirable particles of spent fuel that are 
formed when magma intrudes into a repository can be expected to dissolve into the magma before the 
magma reaches the surface and erupts into the air. On the other hand, because of the 2

0a  dependence of 
the characteristic time (3) used to nondimensionalize the governing equations, dissolution times will 
increase with the square of the particle diameter. Thus the time required to dissolve a particle of 1 mm 
diameter will be between 5.8 hr and 58 hr, and larger particles will dissolve even more slowly.  
 
The calculations show that respirable particles of spent fuel will dissolve into the magma, but larger 
pieces of fuel will remain solid. The net effect is that respirable ash particles will be formed entirely by 
solidification of small droplets of magma and will not contain solid inclusions of spent fuel. On the other 
hand, larger ash particles may contain undissolved pieces of spent fuel. Consequently, respirable ash 
particles will be depleted in refractory spent fuel components compared to the average composition of the 
erupted material.  
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