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ABSTRACT 

 
Electrical resistivity tomography (ERT), during the past few years, has emerged as a potentially 
cost-effective, non-invasive tool for imaging changes of moisture content in the vadose zone.   
The accuracy of ERT surveys, however, has been the subject of debate because of its non-unique 
inverse solution and spatial variability in the parameters of the constitutive resistivity-moisture 
content relation.   In this paper, an integrative inverse approach for ERT, based on a stochastic 
information fusion concept (Yeh and imnek, 2002) was developed to derive the best unbiased 
estimate of the moisture content distribution.  Unlike classical ERT inversion approaches, this 
new approach assimilates both prior information about the geological and moisture content 
structures in a given geological medium, and sparse point measurements of the moisture content, 
electrical resistivity, and electric potential.  Using these types of data and considering the spatial 
variability of the parameters in the resistivity-moisture content relation, the new approach 
directly estimates three-dimensional moisture content distributions, instead of simply changes in 
moisture content in the vadose zone.  Numerical results show that the integrative approach can 
produce accurate estimates of the moisture content distributions, and that incorporating sparse 
measurements of the moisture content is essential to enhance the estimate. 

 
INTRODUCTION 
 
Electrical resistivity surveys are increasingly used to collect extensive electric current and 
potential data in multi-dimensions to image the subsurface electrical resistivity distribution 
[1,2,3,4].  Recently, ERT surveys have found their way into subsurface hydrology applications.  
This is attributed to the fact that knowledge of the spatial distribution of the electrical properties 
of subsurface media can provide valuable information for characterizing waste sites and 
monitoring flow and contaminant movement in the vadose zone.  For example, during an 
infiltration event, the moisture content of a geological medium is generally the only factor that 
undergoes dramatic changes and the changes in resistivity can be related to changes in moisture 
content.  Tracking the changes in resistivity through time, therefore, has been found to be useful 
for detecting temporal changes in the moisture content of the vadose zone [1,5].   
 
While ERT surveys are useful, Yeh et al. [6] showed that uncertainties in tracking moisture 
movement in the vadose zone, based on ERT surveys alone, can be quite significant.  They 
suggested that both inverse modeling of the ERT surveys and the spatial variability of the 
parameters in the constitutive resistivity-moisture content relation contribute to the overall 
uncertainties.  Depending upon the number of parameters to be inverted and the quantity of data 
available [7], the ERT survey inverse problem is often ill-posed, and may have no unique 
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solution.  For ill-posed problems, most ERT inversion approaches employ optimization 
algorithms with some type of regularization (e.g., [8]).  While the regularization algorithm yields 
smooth estimates, there is no guarantee that it will produce the best unbiased estimate of the 
resistivity field, which reflects of the flow process and underlying geological structures.  
Regularization also does not provide a meaningful way to quantify the uncertainty associated 
with the spatial variability.   Additionally, when converting changes in resistivity to changes in 
moisture content, it is often assumed that the parameters in the constitutive resistivity-moisture 
content relation (e.g., Archie’s Law) are constant over the entire domain.  Recent studies by 
Baker [9] and Yeh, et al. [6] reported pronounced spatial variability of these parameters in the 
field.  Neglecting this spatial variability and using a single resistivity-moisture calibration curve 
can add to the level of uncertainty in the final interpreted change in moisture content (in an 
unquantifiable way.) 
 
Besides the uncertainties inherent in the interpretation of ERT surveys, most current three-
dimensional inverse models require significant computational resources to process the large data 
sets typically collected during a survey.   Furthermore, a change in moisture content only 
provides qualitative information about water movement in the vadose zone; the actual moisture 
content values at each point, which are vital to hydrological investigations or hydrological 
inverse modeling (e.g., [7]), remain unknown.  For instance, since the unsaturated hydraulic 
conductivity is a nonlinear function of moisture content, changes in the moisture content alone 
do not provide enough information to uniquely characterize the unsaturated hydraulic properties 
of the vadose zone.  As a consequence, an inverse approach is needed that can account for spatial 
variability in the resistivity-moisture content relation, efficiently process the large number of 
data sets, and produce detailed moisture content distributions with the least amount of 
uncertainty.  
 
While the physical process of electric current flow is different from that of groundwater flow, the 
governing equation of the electric current and the potential fields created during an ERT surveys 
is analogous to that of steady confined groundwater flow.  The mathematical treatment of the 
inversion of an ERT survey is therefore similar to that used in hydraulic tomography [10, 11].  
Using this similarity, the sequential, successive linear estimator approach for hydraulic 
tomography [10], which has been validated with sandbox experiments [12], was extended 
recently to ERT surveys by Yeh et al. [6].    The work by Yeh et al. [6], nevertheless, does not 
directly estimate moisture content distributions with the consideration of the spatial variability in 
the constitutive resistivity-moisture content relation. 
 
In this paper, an integrative algorithm based on a stochastic information fusion concept [7] is 
developed to provide the best unbiased estimate of moisture content distributions in the vadose 
zone by fusing both hydrological and geophysical information.  The hydrological information 
includes point measurements of the moisture content and prior information about moisture 
content distributions (i.e., mean, variance and correlation structure.)  The geophysical 
information consists of point measurements of electric potentials, parameters of the resistivity-
moisture content relation, and prior information about spatial variability of these parameters.  
Numerical experiments were used to demonstrate the robustness of the integrative inverse 
approach for delineating transient moisture content distributions during a non-uniform 
infiltration event in three-dimensional heterogeneous vadose zones. 
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METHODOLOGY 
 
Governing Equation for the Electric Potential 
 
In a geological formation, the electric current flow induced by an electrical resistivity survey in 
general can be described by: 
 

0)())()(( =+∇⋅∇ xIxx φσ  (Eq. 1) 
 

where φ  is electric potential [v], I represents the electric current source density per volume 
[A/m3], and σ is the electrical conductivity [S/m]. Electrical conductivity, σ, is the reciprocal of 
the electrical resistivity, ρ [Ωm], which is assumed to be locally isotropic. The boundary 
conditions associated with Eq. 1 are: 
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where ∗φ  is the electric potential specified at boundary Γ1, i denotes the electrical current density 
per unit area [A/m2],  and n is the unit vector normal to the boundary Γ2. 
 
Constitutive Resistivity and Moisture Content Relation 
 
In this study, a power law relationship was used to relate resistivity to moisture content (e.g. [6]): 
 

m
0

−= θρρ  (Eq. 4) 
where ρ  is bulk electrical resistivity,  ρ0 is a fitting parameter that is related to the electrical 
resistivity of pore water, m is a dimensionless fitting parameter, and θ denotes volumetric 
moisture content.  We assume that ρ0 does not change during an infiltration event in a field. 
Using Eq. 4, the linear relation between log resistivity before and after an infiltration can be 
expressed as: 
 

ln ( ) ( ) ln ( )x m x xρ θ∆ ∆= −  (Eq. 5) 
 

According to this equation, the change of log resistivity (∆ln ρ ) is linearly proportional to the 
change in log moisture content (∆ ln θ).  If m is spatially invariant, the pattern of ∆ln ρ(x) 
directly corresponds to the pattern of ∆ln θ (x) in the entire field.   On the other hand, if m is 
spatially variable and independent of ∆ln θ(x), the pattern of change seen in ln ρ (x) does not 
directly correspond to the pattern of ∆ln θ (x). 
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Furthermore, Eq. 5 is derived with the assumption that during an infiltration event ρ0 remains 
constant, which may not always be valid.  The resistivity of a porous medium can be highly 
variable, depending on the degree of saturation and the type of ions present in the pore water 
[13].  The spatial variability of ρ0 and m may directly correspond to the pore water chemistry.  
Since silica, which comprises most mineral grains (except metallic ores and clays), is an 
insulator, the observed electrical conduction in porous media is mainly through interstitial pore 
water.  When clay minerals are present, a relatively large number of ions may flow into or out of 
solution, through ion exchange, thus significantly changing the electrical conductivity of the 
fluid.  During an infiltration event, other chemical reactions or processes may occur due to 
differences in water chemistry in the infiltrated water, thus altering the composition of ions 
present in pores and changing the nature of the pore electrolytes. This adds another level of 
spatial variability to the resistivity distribution. 
 
Baker [9] measured electrical resistivity as a function of moisture content for core samples 
collected from a bore hole at the Sandia-Tech Vadose Zone (STVZ) infiltration field site in 
Socorro, New Mexico.  A total of 25 samples were collected from eight 5-foot long continuous 
cores.  The electrical resistivity values of the samples at several moisture contents were 
determined using an impedance analyzer. Eq. 4 was subsequently fitted to the measured 
resistivity and moisture data to determine the values for ρ0 and m.   Based on an analysis of the 
data set, Yeh et al. [6] reported that both ln ρ0 and ln m were approximately normally distributed. 
The geometric mean of ρ0 is 7.036 Ωm and the variance, standard deviation, and the coefficient 
of variation for ln ρ0 were 0.633, 0.796, and 40.8%, respectively. For m, the geometric mean was 
1.336 (dimensionless), while variance, standard deviation, and the coefficient of variation for ln 
m were 0.034, 0.185, and 63.7%, respectively.   In addition, they found that both parameters are 
not entirely disordered in space but correlated over short distances.  For ln ρ0, an exponential 
variogram model was used to describe its spatial variability with sill, range, and nugget values of 
0.8, 3.5 m, and 0.08, respectively. Similarly, an exponential variogram model was used for ln m. 
The sill, range, and nugget values for ln m were 0.043, 3.5 m, and 0.01, respectively.  No 
significant correlation between ln ρ0 and ln m was reported. 
 
The observed spatial variability of ln ρ0 and ln m implies that equivalent changes in moisture 
content at different locations in the medium may lead to different changes in the measured 
electrical resistivity.  As a result, the pattern of change in resistivity, detected by ERT surveys in 
a field, may not necessarily reflect the true pattern of change in the moisture content.  To 
overcome this difficulty in interpreting ERT field surveys, we propose an integrative inverse 
algorithm that is based on the concept of stochastic information fusion developed by Yeh and 
imnek [7]. 

 
Inverse (or Estimation) Algorithm 
 
Since the parameters, ρ0, θ, and m, vary spatially, and their specification at every point in space 
is practically impossible, they will be treated as random fields (e.g., [14, 15]), which are 
characterized by their statistical moments (i.e., means, variances, and correlation scales.)  Note 
the fields can be either stationary or nonstationary stochastic processes.  Accordingly, ρ and the 
electric potentialφ  are also treated as stochastic processes.  In the following analysis, it is 
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assumed that ln (ρ0) = F + f, ln (θ) = A + a, ln (m) = N + n and φ  = H + h, where F, A, N, and 
H are the mean values, and f, a, n, and h are the purtubations.   The primary goal of the inverse 
(or estimation) algorithm is to estimate θ and ρ at any point in the three-dimensional geologic 
medium, although it can be used to estimate other parameters (i.e. ρ0, m, and φ) as well.  The 
estimation algorithm integrates point parameter measurements at several locations (including ρ0, 
θ, and m,) and ERT measurements that consist ofφ  and the transmitted current density, I.   Prior 
information about the means and covariances of ρ0, θ, and m is also included; this information 
could be estimated from core samples, geological well logs, or outcrops.   
 
Using first-order analysis, a state variable, such asφ , can be expanded in a Taylor series about 
the mean value of parameter.  Neglecting the second and higher order terms of the Taylor series 
leads to a linear relation between the state variable and the parameters, χi: 
 

φ
χ
φχφφ
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i∑ ∂
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+=  (Eq. 6) 

 
For ERT surveys, i i iX Xχ = − represents the zero mean perturbation of a natural log 
transformed parameter, such as  f = ln (ρ0) - F, a = ln θ - A, and n = ln m – N; the zero mean 
perturbation of the state variable (i.e. electric potential) is h Hφ φ φ= − = − ; / iφ χ∂ ∂  represent 
the sensitivity derivatives of electric potential with respect to the parameters, and are computed 
using an adjoint state method.  Details of  the derivation of these sensitivities can be found in 
Sun and Yeh [16], Li and Yeh [17] and Hughson and Yeh [18].  The sensitivity of the electric 
potential at location i to a perturbation in a parameter at location k can be generally expressed as: 
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Specifically, the sensitivities for the parameters in this study are: 
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where Ωk is the domain of the element containing node k if a finite element approach is used and 
Φ represents the adjoint state variable, which can be solved for using the adjoint state equation: 
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)())(( kxxx −=Φ∇⋅∇ δσ  (Eq. 11) 
 

whereδ is the Dirac delta function, and xk is the measurement location of the electric potential.  
Notice that the mean electric potential, φ , is needed to evaluate the sensitivities (see Eq. 8, 9, 
and 10.)  The mean electric potential is derived by solving a mean equation that is of the same 
form as the Eq. 1 [6], with a mean electrical resistivity and moisture content relation that is the 
same as Eq. 4, but with the parameters set to their mean values.  
 
Once the mean electric potential field is derived, the above sensitivity equations are used to 
calculate covariance of h and the cross-covariance between h and χ.  Rewriting Eq. 6 in matrix 
form yields: 
 

{ } { }χ
χ

χ
X,H

hJh ∑=  (Eq. 12) 

 
where { } indicates the vector of the descretized variable, χhJ is a jacobian matrix representing 
the derivatives of the potential with respect to the parameters, i.e., / iφ χ∂ ∂ , which can be 
obtained using Eq. 8 through 10, and has dimensions of nh × nelem.  The number of voltage 
measurement locations is given as nh,and nelem is the total number of elements in the domain. 
Multiplying Eq. 12 by the transpose of {χ} (i.e. {f}, {a}, {n}) and {h}, and then taking the 
expectations on both sides, yields: 
 

χχχχ RJR hh =   (Eq. 13) 
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χ

χχχχ
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where superscript T denotes transpose; χhR represents the cross-covariance functions between h 
and f, h and a, or h and n, with dimensions of nh × nelem; Rχχ denotes the covariance functions of 
f, a, and n with dimensions of nelem × nelem, and they are given a priori.  A nugget can be added 
to the covariance to represent measurement errors, or variations within the sample scale if they 
are known.  Because little information is available about the parameters, f, a, and n in the field, 
these parameters are assumed to be independent of each other in our study.  Such an assumption 
merely represents the worst scenario in which knowledge of one variable does not provide any 
information about the others.  hhR in Eq. 13 represents the covariance function of h, which has 
dimensions of nh × nh.  Similarly, a nugget representing errors or variability due to scale disparity 
in potential measurements can be added to this covariance function. 
 
Using these cross-covariance and covariance functions, a first-order estimate of the perturbations 
of the log transformed parameters is obtained by using the conditional expectation given 
observed primary information χ* (i.e.ρ, ρ0, and m) and secondary information h* (θ and φ) 
collected during an ERT survey [19, 20]: 
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**ˆ hT
h

T λχλχ χ +=  (Eq. 14) 
 

where χ̂ is a nelem long vector of the estimated purtabation of parameters, ρ0 ,m, and θ ; χ* and 
h* are perturbations of measured parameters and electrical potential, respectively; χλ  and hλ  are 
weights (or cokriging weights in geostatistics) for the measurements, χ* and h* , respectively.  
They are evaluated as follows: 
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 (Eq. 15) 

 
where Cχχ represents the covariance of χ between measurement locations; Chh represents the 
covariance of h between measurement locations; and Chχ denotes cross-covariance between h 
and χ at measurement locations.  The right-hand side of Eq. 15 consists of the covariance of χ 
between measurement locations and the estimate position, and the cross-covariance of h at 
measurement locations and χ at the estimate location.  In other words, the weights used in the 
estimation are not only directly related to spatial correlation structures of parameters and state 
variables at measurement locations, but also the cross-correlations of the parameters and state 
variables, and correlation and cross-correlation between measurements and the location where 
the parameter is to be estimated.  These matrices all are subsets of the covariance and cross 
covariance matrices in Eq. 13. 
 
Equation 14 approximates the nonlinear relation between the parameter to be estimated and the 
measured electric potential by means of a linear first-order approximation.  Thus, the equation 
cannot fully exploit electric potential measurements.  To circumvent this problem, a successive 
linear estimator similar to that used by Yeh et al. [21], Zhang and Yeh [22], Hanna and Yeh [23], 
Vargas-Guzmán and Yeh [24], Hughson and Yeh [18], and Vargas-Guzmán and Yeh [25] is 
employed.  That is: 
 

( ))r(*T)r(
h
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where )1(ˆ +rχ and )(ˆ rχ represent the parameter estimated at iteration r+1 and r, )(rφ  is the electric 
potential at the the measurement locations calculated from the forward simulation using 
parameters estimated at iteration r, and )(r

hλ is the weight at iteration r, which is determined from 
the following: 
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The solution to Eq. 17 requires knowledge of  (r)

hhε and  (r)
hε χ ; they are estimated using the 

following approximations at each iteration: 



WM’04 Conference, February 29-March 4, 2004 Tucson, AZ WM-4193 

εε

εε

χχχχ

χ
χχχχ

(r)
h

(r)(r)
h

h
T(r)

h
(r)(r)

hh

J = 

JJ = 
(r)

∑
 (Eq. 18) 

 
where χhJ is the sensitivity matrix of nh × nelem at iteration r, and superscript T stands for the 
transpose.  At iteration r = 0, χχε is given by: 
 

hh
1 R~R~R λλε χχχχχχχχ −−=  (Eq. 19) 

 
where χχR~ is a subset of χχR .  For r≥1, the residual covariances are evaluated according to 
 

)()()()1( r
h
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h

rr λεεε χχχχχ −=+  (Eq. 20) 
 

Notice that these residual covariances represent first-order approximates of the conditional 
covariances.  
 
Once all three parameters, f, a, and n, are estimated by fully utilizing the potential data and direct 
measurement of the parameters (if any,) the electrical conductivity is then estimated using Eq. 4.  
Afterwards, the mean electric potential equation is solved again with the newly estimated 
electrical conductivity for a new electric potential field.  Then, the maximum change of σχ

2 (the 
variance of the estimated parameters of f, a, and n) and the change in the largest potential misfit 
among all measurement locations between two successive iterations are evaluated.  If both 
changes are smaller than prescribed tolerances, the iteration stops.  If not, new values for εhχ and 
εhh are evaluated using Eq. 18.  Eq. 17 is then solved to obtain a new set of weights that are used 
in Eq. 16 with (φj* - φj (r)) to obtain a new estimate of the parameters.  A theoretical proof the 
convergence of the successive linear estimator is given in Vargas-Guzmán and Yeh [25]. 
 
The previous section describes the ERT inversion algorithm for only one set of primary and 
secondary information obtained in one DC transmission. This algorithm can simultaneously 
include all potential measurements collected during all DC transmissions in an ERT survey.  
However, the system of equations (Eq. 15 and 17) can become extremely large and ill 
conditioned, in which case stable solutions to the equations are difficult to obtain [18].  To avoid 
numerical difficulties in solving the large system of equations, the voltage data sets are included 
sequentially.  The sequential algorithm used is similar to the one developed for use in hydraulic 
tomography inversion [10].  In essence, the proposed sequential approach uses the estimated 
electrical conductivity field, the ρo, m, and θ fields, and their covariances and cross-covariances, 
as prior information for the next estimation using new sets of current/voltage data from DC 
transmissions at different locations.  Vargas-Guzmán and Yeh [24] and Yeh and imnek [7] 
gave an illustrative example of the sequential approach and explained the necessity for updating 
the covariances and cross-covariances.  The sequential inclusion of data sets from different DC 
transmissions continues until all data sets have been utilized.  All data sets are fully processed by 
propagating the conditional first and second moments from one data set to another.  Such a 
sequential approach allows accumulation of high-density secondary information obtained from 



WM’04 Conference, February 29-March 4, 2004 Tucson, AZ WM-4193 

an ERT survey, while maintaining the covariance matrix at a manageable size that can be solved 
with minimal numerical difficulties. 
 
Inversions of ERT surveys for environmental applications are generally ill posed since the 
number of parameters to be estimated is often much greater than the number of measurements of 
the state variable (see [7] for a discussion about necessary and sufficient conditions for a well-
posed inverse problem).  An ill-posed problem typically has an infinite number of global minima 
and solutions.  Classical inverse algorithms (e.g., regularized least-squares approach, [8]) can 
only derive an estimated parameter field that produces an electric potential field honoring 
measurements at sampling locations and a smooth estimate at other locations.  This smooth field, 
however, does not necessarily honor the characteristics of the spatial variability of the true 
parameters (e.g. mean, variance, and correlation structure.)  On the other hand, our 
sequential/successive linear estimator is a conditional effective parameter approach [21, 23, 15, 
7].  It aims to yield a parameter field that produces not only parameter values and state variables 
observed at measurement locations, but also conditional effective parameter values at locations 
where no measurements are available.  The effective parameters are our estimates based on the 
spatial statistics of the parameter field and its cross-correlations with state variables using the 
governing equation for the electric potential but also for the fluid flow process.  Discussions of 
advantages of the approach can be found in Yeh and imnek [7]. 

 
NUMERICAL EXPERIMENTS 
 
In the following numerical examples, we tested our inverse algorithm for transient infiltration 
into a three-dimensional, hypothetical vadose zone.  Water movement was simulated at 1,000 
and 50,000 minutes from the commencement of an infiltration event.  The simulated moisture 
content distributions at these two times, θ1,000 and θ50,000, were used as the true moisture content 
fields; and their difference was denoted as the true moisture content change in the following 
analysis.  Following generation of random fields of ρo and m, the true resistivity fields at 1,000 
and 50,000 minutes were calculated using Eq. 4 with the generated ρo, m, θ1,000 and θ50,000 fields. 
 
Next, ERT surveys were simulated using these two resistivity fields.  After collecting 
voltage/current data sets, two different inverse approaches were used to interpret water flow due 
to the infiltration event.  The first approach used the inverse model developed by Yeh et al. [6] 
based on electric potential measurements only, to derive resistivity fields at times of 1,000 and 
50,000 minutes. Next, the change in resistivity from 1,000 to 50,000 minutes is computed.  
Finally, the estimated change in resistivity is used to interpret the change in moisture content.  
The second approach estimated moisture distribution at 50,000 minutes directly using our new 
integrative method.  
 
The hypothetical site was assumed to be a cube, 200 cm on each side, consisting of 2,000 
elements, 20 × 20 × 10cm in size. The unsaturated hydraulic properties of each element were 
assumed to be described by the Mualem-van Genuchten model [26]: 
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 (Eq. 21) 

 
where K(ψ) is the unsaturated hydraulic conductivity as a function of the pressure head, ψ; Ks is 
the saturated hydraulic conductivity; α and β are shape factors; γ=(1-1/ β); sθ  is the saturated 
moisture content, and rθ is the residual moisture content.  To represent heterogeneity, the 
parameters of Eq. 21 were assumed to be stochastic processes.  Since spatial variations in sθ and 

rθ are generally negligible, both were treated as deterministic constants with values of 0.366 and 
0.029, respectively.  The parameters, Ks, α, and ß for each element in the simulation domain 
were generated using a method by Gutjahr [27] with specified means, variances, and correlation 
structures as listed in Table I.  These generated random fields are then denoted as the true 
distributions of the hydraulic parameters for the hypothetical site.  Figures 1a, b and c show the 
generated ln Ks, ln α, and ln ß fields, respectively. 
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Fig. 1  a) Generated ln Ks field; b) Generated ln α field; c) Generated ln ß field; d) True moisture 

content field at t =1,000 minutes,  e) generated true ln ρo field; f) generated true ln m 
field. 
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Table I Hydrological and statistical parameters used in 3-D analysis 
parameter mean variance λx [cm] λy [cm] λz [cm] Covariance model

Ks [cm/min] 0.043 0.893 80 80 20 Exponential 
α [1/cm] 0.067 0.631 80 80 20 Exponential 
β 1.811 0.015 80 80 20 Exponential 

 
The initial pressure head condition was assumed to be hydrostatic. Specifically, the bottom was 
set at a prescribed pressure head of -50 cm, and the top was fixed at a pressure head of -250 cm.  
Infiltration occurred over an area of 1,600 cm2 on the top center of the cube at a pressure head of 
-50 cm, while no-flux boundary conditions were assigned to the remainder of the top and the 
four sides.  This created non-uniform vertical infiltration fields from a constant source on the top 
center of the flow domain.  The infiltration process was simulated using a finite element model 
[28] to obtain moisture distributions.  Figure 1d shows the moisture content distribution 1,000 
minutes after infiltration began.  Mean moisture content distributions at 1,000 and 50,000 
minutes were similarly obtained with effective mean values of the hydraulic parameters.  True 
changes in ln θ were computed as the differences between the true ln θ distributions at 1,000 and 
50,000 minutes (Fig. 3a). 

 
Fig. 3   a) True moisture content θ at t = 50,000 minutes;  b) Estimated θ at t= 50,000 minutes 

without θ measurements;  c) Estimated θ at t= 50,000 minutes with 20 θ measurements;  
d) Schematic diagram for 3-D ERT experiments, top center square indicates the 
infiltration area, right triangles indicate voltage measurement locations, circles show 
current source locations, and squares show the locations of 20 θ measurements;  e) The 
scatter plot corresponding to b);  f) The scatter plot corresponding to c). 
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To represent spatial variability in the parameters of the resistivity and moisture content relation 
in the field, the two parameters, ρo and m were considered as random fields with geometric 
means of 7.036 Ωm and 1.336, respectively. Variances of ln ρo and ln m were assumed to be 
0.633 and 0.034, respectively.  We again assumed that both parameters possessed the same 
exponential correlation structure with a horizontal correlation scale of 80 cm and a vertical 
correlation scale of 20 cm.  Figures 1e and f show the generated true fields for these two 
parameters.  
 
Based on these synthetic ρo, m, θ1,000 and θ50,000 fields, true synthetic resistivity fields at times of 
1,000 and 50,000 minutes ( ρ1,000 and ρ50,000, respectively) were calculated using Eq. 4.  ERT 
surveys were then simulated using these two resistivity fields.  Figure 3d displays the three-
dimensional layout of the ERT survey.  The design of  the ERT survey included four bore holes 
penetrating the entire depth of the site domain.  The x and y coordinates pairs, in centimeters, of 
the four bore holes were (50, 50), (150, 50), (50, 150), and (150, 150).  Twenty electrodes were 
installed along each bore hole.  Electrodes were also deployed along the surface in four lines 
with endpoints at the above x-y coordinates.  Current sources were installed along the upper right 
bore hole (150, 150) at the five depths of 25, 55, 95, 135, and 175 cm.  Using the same collection 
precedure for the voltage data as used for the 2-D numerical examples, five ERT voltage data 
sets of 111 voltage measurements each were obtained.  In addition, 20 ρo and m values along 
each of the four bore holes (a toal of 80 measurements) were assumed to be available for our 
analysis, while θ was sampled at 20 locations indicated by squares in Fig. 3d.  To investigate the 
effect of direct θ  measurements on the inverted estimate of the moisture content at the site, the 
moisture content distribution at 50,000 minutes was estimated without any θ measurement and 
compared to the estimate with 20 θ measurements. 

 
Using Resistivity Change to Interpret Water Flow.   
 
For the purpose of comparison, resistivity changes were computed to reflect water movement in 
vadose zone.  Forward simulations of ERT surveys based on the previously discussed network 
layout were conducted using the simulated moisture distributions at 1,000 and 50,000 minutes.  
Five voltage data sets were collected and then used in the inverse approach of Yeh et al. [6] to 
estimate the resistivity fields at these two specified times. The change in resistivity between 
1,000 and 50,000 minutes was then computed. Figure 2a displays the pattern of the true moisture 
content change, and Fig. 2b the estimated pattern of resistivity change.  A comparison of these 
two figures indicates that interpretation of water movement based on the pattern of the estimated 
resistivity change alone led to incorrect estimates of water flow.  Between 1,000 and 50,000 
minutes, the true water front moved in a south-west direction, while the estimated pattern of 
resistivity change suggests flow in a south-eastern direction.  Two factors contribute to this 
discrepency: uncertainty in the estimated resistivity fields, caused by a limited number of voltage 
measurements and spatial variability in the parameters of the resistivity-moisture content 
relationship (especially in parameter m).  According to Eq. 5,  the pattern of the change in 
resistivity in the domain is proportional to that of changes in the moisture content by a constant 
m.  If  m is not spatial invariant, the pattern of changes in the resistivity will not resemble those 
in the moisture content.  Thus, a detailed spatial distribution of the parameter must be known to 
correctly relate changes in the resistivity to those in the moisture content.  The more variability m 
is, the greater the difference between the pattern of moisture change and  that of the resistivity 
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change will be.  Relying only on changes in resistivity and neglecting spatial variability in the 
parameters of the resistivity-moisture content relationship can undoubtedly lead to erroneous 
flow directions and patterns. 
 
 

 
Fig. 2. a) True ∆ln θ from 1,000 to 5,000 minutes; b) Estimated ∆ln ρ from 

1,000 to 50,000 minutes. 
 
Directly Estimation of Moisture content Distribution.   
 
Figures 3a and b show the true moisture content distribution at 50,000 minutes and the 
corresponding estimated moisture content distribution using 111 × 5 voltage measurements, and 
80 ρo and m measurements.  The estimated field using the same number of voltage, ρo and m 
measurements, but also including 20 direct θ measurements, is illustrated in Fig. 3c.  
Comparisons of the three figures show that the proposed inverse algorithm reproduces the 
general pattern of the simulated true moisture content distribution, even though the constitutive 
relation between resistivity and moisture varies spatially.  The inclusion of the 20 θ 
measurements, in particular, greatly improves the estimates of the θ distribution.  Figures 3e and 
f are scatter plots corresponding to Fig.s 3b and c, respectively; a 45o line indicates perfect 
estimation. The goodness of fit was also evaluated using L1 and L2 norms.  The reduction in the 
L1 and L2 norms from Figs. 3e to f suggests that the addition of moisture content measurements 
dramatically improve the estimate.  The conditional variance of the estimate from our stochastic 
fusion approach can be used to assess the uncertainty associated with the estimate: a smaller 
conditional variance indicates less uncertainty in the estimate.  The conditional variances 
corresponding to the estimates by using zero and 20 θ  measurements are shown on Figs. 4a and 
b, respectively.  Small conditional variances are located closely to the four bore holes where 
secondary information is measured.  At locations where moisture content measurements were 
collected, the conditional variance is zero, indicating that these observations are honored in the 
inverse model and that no uncertainty exists. 
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Fig. 4. a) Conditional variance when no θ measurements are used at t= 50,000 minutes; b) 
Conditional variance when 20 θ measurements are used at t= 50,000 minutes. Circles 
indicate θ measurement locations 

 
CONCLUSION 
 
Knowledge of detailed moisture content distributions is important to our unstanding of vadose 
zone processes and water resouces management.  An ERT inversion based on the concept of 
stochastic information fusion is developed to directly estimate moisture content distributions in a 
three-dimensional vadose zone.  The approach integrates point measurements of electric 
potential, parameters of the constitutive relation between moisture and resistivity, and moisture 
content.  In addition, the approach includes prior information about the spatial statistics of the 
moisture content distribution and the paramters of the constitutive relation.   
 
Numerical examples illustrate that interpretations of water movement in the subsurface, based on 
only the estimated resistivity changes, can be misleading, due to spatial variability in the 
resistivity-moisture content relation parameters.  Numerical examples also demonstrate the 
ability of the integrative ERT survey inverse model for estimating moisture contents directly.  
The model yields good estimates at the locations where primary and secondary information is 
measured.  Primary information (i.e., the moisture measurements) contributes significantly to the 
accuracy of the estimated moisture content distribution.  A large number of potential 
measurements are useful but they did not dramatically improve the estimate.  This further 
supports the finding by Yeh et al. [6] that potential measurements alone are inadequate to 
characterize water flow in vadose zone.  Finally, we conclude that fusing geophysical 
measurements with hydrological information using a stochastic approach is necessary to yield 
hydrologically realistic results under field conditions and to quantify uncertainty associated with 
the results.  
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