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ABSTRACT 

Low-level and intermediate-level dismantling waste from 58 P.W.R. nuclear plants of Électricité de 
France (E.D.F.) will be shipped to surface disposal. 
 
The only E.D.F.-P.W.R. comprehensive activation computation is now available on a 300 MWe plant that 
was shutdown a few years ago. Anyway, what best can be done without further long and detailed 
computation is simply considering this plant as a 1/3-scale model of a 900 MWe PWR plant but the scale 
effect is not enough. 
 
Indeed, for each radio nuclide, in order to take into account the effect of changing the operating cycle 
history, some algebraic properties of activation calculations should be introduced. Such elementary 
properties are almost never enhanced.  
 
Nevertheless, these properties prove very useful for either “precise” or “approximated” computations. 
What is here called “precise” computation considers the fact that target parent isotopes are used whereas 
“approximated” computation neglects it. 
 

INTRODUCTION AND GENERAL PROBLEM 

The general purpose of disposal management is to stay below acceptable exposure to the critical group. 
This critical group is a group of members of the public whose exposure to radiation is typical of 
individuals receiving the highest dose coming from the disposal in the future. 
 
Such a calculation uses, for each nuclide, the most pessimistic way by dispersion through the system of 
engineered and natural barriers to its critical pathway. For a given disposal, such a safety study provides 
the facility with the global radioactivity limit for each nuclide having a sanitary impact. 
 
It is the reason why nuclear waste producer needs to declare the global activity of numerous nuclides 
which will be shipped to the repository. EDF needs to know the order of magnitude of global activity for 
the main radionuclides from dismantling. 
 
The main purpose of this paper is to present some useful algebraic properties of activation under neutron 
flux. 
Such properties allow us to compute sensibility calculation with respect to initial chemical compositions 
and operating cycle history of the plant. 
 
In order to globally evaluate the amount of activity corresponding to the shipment to the surface disposal 
of all the 58 French PWR NPP with a 40-year program of operation, a practical application of the method 
is presented. 
 
For global quantification of a 40-year operation, we start only from limited detailed calculation made on 
metallic LLW of Chooz A PWR plant. Only direct activation of stable (no radioactive) chemical element 
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in their natural isotopic composition is considered. Activation considered came from a neutron spectrum 
computed by multiplication of 100% nominal power spectrum with a scalar function u(t) representing the 
operating cycle history of the NPP.  
 
A radioactive decay like notion is also used to describe the rate of decreasing of the stable parent nuclide. 
The time corresponding to that decay is replaced by the “effective nominal power time” because this very 
time is actually the one that is at the origin of the parent nuclide equivalent decreasing. The difference 
between both types of computation is quantified and a general rule is given to know if the global 
approximated method is acceptable or not as another incertitude source. 
 
The first step of the method is based on linearity of activation with respect to initial chemical 
compositions and allow us to introduce activation matrix. 
 

ACTIVATION MATRIX 
 
Demonstration by superposition principle 
 
For a given neutron flux history, we know that the multiplication by λ applied to the vector X1 of masses 
of target elements induces the same multiplication by λ on each radio nuclide (RN) produced. 
 
We have  f(λ X1) = λ f(X1) 
 
For a given neutron flux history, let’s consider separately the RN produced by a first X1 mass vector and 
by a second X2 mass vector. 
If we activate simultaneously these two vectors (sum of masses of each element), we will get the sum of 
activities obtained for each radio nuclide. 
 
We have  f(X1+X2) = f(X1)+f(X2) 
 
We recognize a linear operator from Rm to Rp where m is the number of chemical elements (subscript j) in 
their natural isotopic composition and p is the number of RN (subscript i). The matrix of that linear 
operator will be called “activation matrix” ( )

jiji
Mat

,, . 

For a given part of a NPP, this matrix is a function of the neutron flux at 100% nominal power and of the 
operating history. 
 
The best way to obtain it consists in computing separately the activation of each chemical element at a 
given density. This allows us to get, per mass unit, each column of the “activation matrix”. 
 
The matrix multiplication by mass vector X of chemical elements gives the activities even if we have to 
modify the level of an impurity at the end of the study. 
This is very useful when you know that the main incertitude on activation comes from the order of 
magnitude of impurities which effect on final activity may be very high. 
 
What has been explained about each chemical element can bee generalized to each isotope and give a 
more detailed “activation matrix”. 
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UNDER FLUX DECREASING OF STABLE “TARGET” COMPUTATION 
 
Radio nuclide generation come from transformation of the stable parent nuclides. As radioactive 
decreasing, this phenomenon is stochastic and proportional to the quantity of stable parent isotopes. 
 
The only difference is that the time involved is not the real time but the nominal power effective time 
because the reaction is proportional to the number of neutron, this number being itself proportional to the 
produced power. Later on, a notion of “effective nominal power time” will allow us to cope with 
activation dynamics. 
 
As far as we remain at 100% nominal power, there is no difference. The macroscopic effect is an effective 
nominal power half-life and the analogy make it easy to understand. 
 
BATEMAN’S EQUATIONS WITH CONSTANT NEUTRON FLUX 
 
Let’s give to stable isotope a peculiar treatment in solving activation equations. We have seen that, 
because of a same stochastic generation at nuclear scale, any stable isotope behaves under constant 
neutron flux exactly as if radioactive without flux. 
 
Let’s consider X as the stable isotope vector of dimension m which each component decreases under a 
neutron flux corresponding to the constant fraction of nominal power u. 

 (Eq. 1) 
 
If we don’t take into account the generation of a stable isotope by activation of an other stable isotope, 
matrix N (m × m) corresponding to nominal power neutron flux is diagonal. 

 (Eq. 2) 
 
Let’s consider V as the radioactive isotope vector which each component decreases without any neutron 
(matrix L) and also under neutron flux (matrix M) corresponding to the constant fraction of nominal 
power u. P is a (p×m) matrix and P(.,j) is its column j. If we consider the restriction of V to radioactive 
nuclides which are direct daughters of a non-radioactive nuclide, L and M are also diagonal. 

 (Eq. 3)
 

 (Eq. 4)
 

 
The solution X(t) is : 
 

 (Eq. 5) 
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The solution of V(t) could be verified nevertheless : 

  (Eq. 6)
 

Considering only the activation of isotope j, we have: 

 (Eq. 7) 
 
Let’s consider ∆t the time of activation under constant neutron flux. 
We have, in the neighborhood of zero : 

 (Eq. 8) 
 
Let’s introduce what we can call the impulse matrix of dimension p×m which is independent of L, M and 
N matrixes. 

 (Eq. 9) 
 
 

 (Eq. 10) 

 
BATEMAN’S EQUATIONS WITH A VARIABLE POWER LEVEL 
 
Exact solution 
 
Let’s introduce now what we can call the “effective nominal power time” at time t. 

( ) ( )∫=Θ
t

dut
0

ττ  

Considering only the activation of isotope j, we have: 

 (Eq. 11) 
 
Considering only a radioactive nuclide (i) which is the direct daughter of a non-radioactive nuclide: 
 

 (Eq. 12) 
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Approximated solution 
 
Considering only the activation of isotope j, we have: 

 (Eq. 13) 
 

 (Eq. 14) 
 
Considering only a radioactive nuclide (i) which is the direct daughter of a non-radioactive nuclide: 

 (Eq. 15) 
 

 (Eq. 16)
 

 
Error quantification of approximated solution for a RN direct daughter of a non-radioactive nuclide 
 
In the general case, let’s introduce the following approximation: (Eq. 17) 

 
 

 (Eq. 18) 

 
We can now give the maximum error induced by neglecting, both decreasing under neutron flux of stable 
parent isotope and decreasing under flux of the RN which has just been generated by activation. 
 
Error from practical computation of solutions for RN which are direct daughter of a non-radioactive 
nuclide and at nominal power 
 
u(t) being now equal to 1, we can compute then: 
 
 (Eq. 19) 

 
 

 (Eq. 20)
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 (Eq. 21) 
 
We can deduce from these calculus the computational relative error magnitude: 
 

 (Eq. 22) 

 
If plant operating history is cut into ∆t intervals with u(t) constant on each of them, ∆t being chosen small 
enough to compute the integral, we have a classical result which quantification of error is well known: 
 
 (Eq. 23) 

 (Eq. 24) 
 
∆t being chosen small enough compared to the dynamic of decreasing of radioactive nuclide (i) (simple 
radioactive decreasing or under flux decreasing) and small enough compared to the dynamic of under 
neutron flux decreasing of stable isotope (j), we have: 
 (Eq. 25) 

 (Eq. 26) 
 
In all cases, the approximated form gives a very simplified expression of the linear operator which 
transform the RN vector after a time ∆t at nominal power into the RN vector after a time t with an 
operating history composed of several intervals at constant power: 

 (Eq. 27) 
 
CHOOOZ A P.W.R. PLANT : FROM REAL OPERATING HISTORY TO AN OTHER ONE 
 
Let’s introduce the generalized half life τ : 

 (Eq. 28)
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The calculation which does not neglect the effect of under-flux decreasing of stable isotope has been 
performed with respect to τ which is the “half life like” computed for the maximum neutron flux 
calculated on each part of the PWR reactor and on each of the 3 energy groups. If we need to have a less 
pessimistic calculation, we can take into account the fact that the maximum flux is at least divided by 5 on 
about 75% of the volume of the PWR reactor. 
 
In that case, the effective nominal power half-life is multiplied by 5, which divided the corresponding 
error between approximated and exact calculus by 5. In order to reasonably estimate the error, we can 
select (in the matrix activation row) the major stable element which give the effective nominal power 
half-life. 
 
It could be demonstrated (but it’s rather … long), that the error calculation may be generalized to 
chemical element having a given isotopic composition. In that case, the value ν is a weighted average of 
isotopic values and is dependant on the couple (RN, chemical element). 
 
This precision being given, we can compute the following τ (nominal power effective half life) for each 
couple (RN, chemical element).  
 

Table 1 

Radio nuclide 
Radioactive half-live 

(year) 
Main chemical 

element 
Minimum τ nominal power effective half 

life (year) 
CO57 7.43E-01 NI 180.00 

SN119M 8.02E-01 SN 427.00 
SN119M 8.02E-01 SN 427.00 

MN54 8.56E-01 MN 57.30 
FE55 2.70E+00 NI 180.00 

SB125 2.73E+00 SN 377.00 
CO60 5.27E+00 CO 15.70 

H3 1.23E+01 CO 15.70 
NB93M 1.64E+01 ZR 2180.00 
SN121M 5.00E+01 SN 1490.00 

NI63 1.00E+02 NI 61.10 
MO93 3.50E+03 MO 2520.00 
C14 5.73E+03 N 414.00 

NB94 2.03E+04 MO 721.00 
NI59 7.49E+04 NI 180.00 
TC99 2.13E+05 MO 372.00 
ZR93 1.53E+06 MO 126.00 
BE10 1.60E+06 N 414.00 
MN53 3.70E+06 MN 57.30 
NB92 3.50E+07 MO 2520.00 
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The real nominal power effective time of CHOOZ A plant has been of 14.54 year and the planned 
nominal power effective time of now operating French PWR NPP is of 37.3 year. 
 

Table 2 
Chooz A 
real case 

Beginning 
day 

Ending day Nominal power 
percentage 

Reference 
40 y PWR 

Beginning 
day 

Ending 
day 

Nominal power 
percentage 

1 0 869 45.30% 1 0 577 78% 
2 935 1239 84.20% 2 607 973 100% 
3 1283 1589 85.50% 3 991 1357 100% 
4 1625 2023 83.80% 4 1375 1741 100% 
5 2157 2449 84.00% 5 1759 2125 100% 
6 2489 2777 73.60% 6 2143 2509 100% 
7 2884 3309 90.10% 7 2527 2893 100% 
8 3384 3701 93.70% 8 2911 3277 100% 
9 3809 4067 90.90% 9 3295 3661 100% 
10 4180 4492 97.50% 10 3716 4082 100% 
11 4613 4925 94.40% 11 4100 4466 100% 
12 4986 5311 91.30% 12 4484 4850 100% 
13 5382 5731 92.70% 13 4868 5234 100% 
14 5944 6228 96.50% 14 5252 5618 100% 
15 6379 6662 90.00% 15 5636 6002 100% 
16 7014 7383 93.00% 16 6020 6386 100% 
17 7460 7901 90.00% 17 6404 6770 100% 
18 7959 8188 90.00% 18 6788 7154 100% 
    19 7172 7538 100% 
    20 7598 7964 100% 
    21 7982 8348 100% 
    22 8366 8732 100% 
    23 8750 9116 100% 
    24 9134 9500 100% 
    25 9518 9884 100% 
    26 9902 10268 100% 
    27 10286 10652 100% 
    28 10670 11036 100% 
    29 11113 11479 100% 
    30 11497 11863 100% 
    31 11881 12247 100% 
    32 12265 12631 100% 
    33 12649 13015 100% 
    34 13092 13458 100% 
    35 13476 13842 100% 
    36 13860 14226 100% 
    37 14244 14610 100% 
 
We have calculated the influence of the neutron flux history when changing the real operating history of 
Chooz A into a normative 40-year exploitation time. We will use both the approximated activation (eq. 
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26) and the exact (eq. 25) activation (we only neglect in that case, the under flux decreasing of radio 
nuclide). 
 
CURVE TO ILLUSTRATE THE CALCULATION OF ERROR 
 
Each radio nuclide calculation has been performed with respect to variable τ varying between 15.7 year 
(corresponding to Co) and 2520 year (corresponding to Mo) with ∆t = 1 day and the relative error made 
when replacing exact calculation (eq. 25) by approximated calculation (eq. 26) has been computed. 
 

 
Fig. 1 

 
 
If we consider the different stable parent chemical element effective “half life” from table 1 associated to 
each RN, we can see that the relative error may became very low and anyway, give a good order of 
magnitude for global prevision purposes. 
 
CONCLUSION AND LESSONS LEARNED 
 
Approximated method 
 
Even if we don’t know precisely the detailed initial chemical composition, the approximated (Eq. 26) 
formula allows us to extrapolate from an given operating history to an other. 
 
With this simple method, starting from a single plant detailed computations, a first estimate of the global 
quantity of Co-57, Sn-119m, Sn-119m, Mn-54, Fe-55, Sb-125, Co-60, H-3, Nb-93m, Sn-121m, Ni-63, 
Mo-93, C-14, Nb-94, Ni-59, Tc-99, Zr-93, Be-10, Mn-53 and Nb-92 from the 58 P.W.R. plant 
dismantling metallic waste can be given using the approximated method with a sufficient precision for 
activity inventory previsions for disposal. 
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Exact method 
 
Otherwise, this exact method (Eq. 25) is particularly useful for any other activation calculation purpose 
because it needs only a few simple and fast “heavy code” computations at 100% power during a fixed 
time period. Starting only from these elementary results, a plain electronic sheet may give all full 
computations and sensibility analysis with respect to initial composition of activated materials and also 
with respect to detailed operating history. 
 
Such activation computation properties, using approximation or not according to purposes, should 
improve dismantling activated waste characterization efficiency. 
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