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ABSTRACT 
 
In a report on model evaluation, the authors ran the HYDRUS Code, among other transport 
codes, to evaluate the impacts of nonequilibrium sorption sites on the time-evolution of 99Tc and 
90Sr through the vadose zone.  Since our evaluation was based on a rather low, annual recharge 
rate, many of the numerical results derived from HYDRUS indicated that the nonequilibrium 
sorption sites, in essence, acted as equilibrium sorption sites.  To help explain these results, we 
considered a “stripped-down” version of the HYDRUS system.  This “stripped-down” version 
possesses two dependent variables, one for the radionuclides in solution and the other for the 
radionuclides adsorbed to the nonequilibrium sites; and it possesses constant physical 
parameters.  The resultant governing equation for the radionuclides in solution is a linear, 
advection-dispersion-reaction (i.e., radioactive decay) partial differential equation containing a 
history integral term accounting for the nonequilibrium sorption sites.  It is this “stripped-down” 
version, which is the subject of this paper. We found an exact solution to this new version of the 
model.  The exact solution is given in terms of a single definite integral of terms involving 
elementary functions of the independent variables and the system parameters.  This integral 
possesses adequate convergence properties and is easy to evaluate, both in a quantitative matter 
and in a qualitative manner.  The parameters that are considered in the system are as follows:  the 
radionuclide’s equilibrium partition coefficient between water and soil, the bulk density of the 
soil, the fractions of equilibrium/nonequilibrium sorption sites, the volumetric water content, the 
first order equilibrium adsorption rate constant, the first order radioactive decay rate constant, the 
liquid water soil tortuosity factor, the molecular diffusion coefficient in water, the longitudinal 
dispersivity factor, and the Darcian fluid flux density.  In addition, the system possesses a 
stepwise, variable source of radionuclides at the ground surface and a variable flux of pollutants 
from the vadose zone at the water table.  Although this new system is a “stripped down” version 
of the HYDRUS Code, it is a valuable system in its own right for the assessment of 
nonequilibrium sorption of radionuclides in the vadose zone. 
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INTRODUCTION 
 
Knox, et al. (1) and Thibodeaux (2) describe in detail the various processes influencing solid-
liquid soil reactions, including those processes characterized as adsorption/desorption.  
Depending upon the soil structure and texture, the characteristics of the contaminants, and the 
flow characteristics, the characteristic time scales for physical adsorption/desorption are known 
to vary from microseconds to months.  In addition, experimental evidence has indicated that the 
solid-phase fraction of a contaminant on the desorption cycle often behaves much different than 
when the contaminant is on the adsorption cycle.  This leads to nonequilibrium soil reaction 
states and hysteretic type adsorption/desorption cycles.  Knox, et al. (1) say that such hysteretic 
cycles affect the amount of water required in pump and treat remediation of subsurface aquifers.  
This conclusion is reinforced by the work of Brogan and Gailey (3).  These latter authors found 
that when significant rate limitations to solute transport are present, predictions based on the 
local equilibrium assumption (LEA) will underestimate the actual cleanup time for pump and 
treat operations.  The slower the mass transfer rates, the longer it will take to achieve desired 
remedial goals.  Conversely, they state that when rate limitations do not appear significant, 
predictions based on LEA may be appropriate. 
 
Thibodeaux (2) states that the validity of the LEA in solid-liquid soil reactions depends on the 
degree of interaction between the macroscopic transport processes of water flow and 
hydrodynamic dispersion, and the microscopic processes of molecular diffusion and sorbed-
solute distribution in conjunction with soil aggregate size.  When the rate of change of solute 
mass during macroscopic sorption processes is fast relative to bulk flow, the interaction is nearly 
instantaneous (comparatively speaking), and it conforms to the LEA.  Deviations from local 
equilibrium occur as the interactions of the solute with the porous media become increasingly 
time dependent with respect to the time scales of the bulk flow.  This divergence also occurs as 
soil aggregates increase in size and the pore-class heterogeneity increases. 
 
The current authors were exposed to those temporal scaling problems of solid-phase soil 
reactions while evaluating several numerical, mathematical models of water and chemical 
movement in soils that could be used as decision aids for determining soil screening levels of 
radionuclides in the unsaturated, or vadose zone (4).  Many of these flow/transport codes require 
extensive sets of input parameters, and some of the parameters possess high degrees of 
uncertainty due to soil variability and unknown future meteorological conditions.  The impacts of 
uncertain model parameters upon pertinent model outputs are required for sound modeling 
applications.  Model users need an understanding of these impacts so they can collect the 
appropriate data for parameter evaluation at a given site and incorporate the uncertainties of 
model prediction into the decision making process.  Of the several models considered in our 
evaluation of these matters, one model, the HYDRUS Code of the U.S. Salinity Laboratory in 
Riverside, California (5), has the facility for tracking both the time-evolution of radionuclides in 
solution and radionuclides at nonequilibrium sites throughout the soil column.  The formulation 
of the equilibrium/nonequilibrium processes in this code is based on the two-site model of van 
Genuchten and Wagenet (6). 
 
In Chen et al (4), the model calculations and evaluations were conducted at a hypothetical, 
radionuclide disposal facility using real soil properties and climatic data from a site in 
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southwestern United States.  The transport of radionuclides through this semi-arid, unsaturated 
zone was under the influence of a very low annual recharge rate, which led to a hydrodynamic 
dispersion of only three times that of molecular diffusion.  Under these conditions, sorption sites 
that are in local equilibrium at higher recharge rates will still be in local equilibrium.  Some new 
sites where nonequilibrium conditions exist or sites where no liquid-solid reactions occur at 
higher rates will now become sites governed by LEA under these low flow rates.  Other new 
sites will pass from no action sites under higher flows to nonequilibrium sorption sites under the 
low flows, and some sites will be nonequilibrium sites under both the higher and lower flows.  
Thus, the adsorption-desorption cycle of a given pollutant through a given soil profile may 
exhibit a variety of characteristic time scales dependent upon the types of liquid-solid reaction 
mechanisms occurring at the various sites in the soil matrix and the flow regimes under which 
the contaminant moves.  Therefore, the current authors thought it was reasonable to consider the 
occurrence of equilibrium/nonequilibrium sorption sites under all flow regimes, even the low 
annual recharge rates considered in Chen, et al. (4). 
 
To evaluate the consequences of nonequilibrium sorption sites on the time-evolution of 99Tc and 
90Sr migrating through a finite depth vadose zone, Chen, et al (4) used the HYDRUS Code.  For 
the low annual recharge rate mentioned above, the HYDRUS numerical results for what was 
thought to be reasonable choices of the system parameters indicated that the nonequilibrium 
sorption sites, in essence, acted as equilibrium sorption sites.  Parameter sets were found that did 
exhibit non-Gaussian like behavior (i.e., nonequilibrium behavior) for pollution concentration 
breakthrough curves (BTCs), but some of the parameters in these sets may have been physically 
unrealistic.  To help explain these results, we considered a “stripped-down” version of the 
HYDRUS system.  This “stripped down” version possesses two dependent variables, one for the 
radionuclides in solution and the other for the radionuclides adsorbed to the nonequilibrium sites.  
The two systems possess constant physical parameters.  These two systems can be combined to 
give a resultant governing equation for the radionuclides in solution.   This resultant equation is a 
linear, advection-dispersion-reaction (i.e., radioactive decay) partial integro-differential equation 
containing a history integral term accounting for the nonequilibrium sorption sites.  It is this 
“stripped down” version of HYDRUS, which is the subject of the current paper.  In passing, we 
should note that Toride, et al. (7) have also derived analytical, exact solutions for a similar 
system.  However, Toride, et al., (7) considered semi-infinite soil systems, while we consider 
finite depth systems.   In addition, several of our solution steps are quite different than those of 
Toride, et al., (7) and these steps have application to other linear, advection-dispersion-reaction 
systems. 
 
THE GOVERNING EQUATIONS 
 
For discussion and argument purposes in the report by Chen, et al. (4), the HYDRUS transport 
equations for the liquid phase pollutant concentration C*, in units of M/L3, and the 
nonequilibrium solid phase concentration S*, in units of M/M were simplified as follows: 
 
 � �* * * * *

,t ,z ,zzC  QC   DC  C D / P  ,� � �� � �      (Eq. 1) 
 
 � �* * *

tS,   D / P   S ,� � �        (Eq. 2) 
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where the subscript comma followed by t or z indicates partial differentiation with respect  to t or 
z, respectively.  A letter repeated twice indicates a second partial derivative.  The parameters in 
Equations 1 and 2 are the effective velocity of the sorbing radionuclide through the vadose zone 
(Q in units of L/T), the effective dispersion coefficient of the sorbing radionuclide in the vadose 
zone (D in units of L2/T), the effective bulk density of the porous medium (Λ in units of M/L3), 
the first order rate constant for radioactive decay (µ* in units of 1/T), and a decay/production 
term (D/P in units of 1/T).  The quantities D, (D/P), Q and Λ are defined by: 
 
 � �w w LD  D  D q   R ,� �� � �       (Eq. 3) 
 
 � � � � * *

dD / P   * 1 f  K C  S  ,� �� � � �� �       (Eq. 4) 
 
 Q  q  R,            R ,� � � � � �       (Eq. 5) 
 
where R is a retardation factor defined by 
 
 dR =  f  K  .���         (Eq. 6) 
 
The other parameters in Equations 3 to 6 are defined in the following list: 
 
 �  =  volumetric water content, L3/L3, or unitless, 
 �w  =  tortuosity factor in the liquid phase, unitless, 
 Dw  =  molecular diffusion coefficient of the radionuclide in water, L2/T, 
 DL =  longitudinal dispersivity of the radionuclide, L,  
 q = Darcian fluid flux density of the water, L/T, 
 �* =  First order adsorption rate constant, 1/T, 
 f  =  fraction of sorption sites at equilibrium, unitless, 
 1-f =  fraction of sorption sites at nonequilibrium, unitless, 
 Kd =  distribution coefficient between liquid and solid phases, L3/M, 
 � = bulk density of the porous medium M/L3. 
 
The initial and boundary conditions corresponding to the transport Equations 1 and 2 are defined 
over an infinite time interval t > 0, and a finite depth, vadose zone, where z = 0 at the surface of 
the zone and z = L at the water table.  These conditions are as follows: 
 
 *C (z,0)  0,      0  z  L ,� � �       (Eq. 7) 
 
 *S (z,0)  =  0 ,      0 <  z  < L ,        (Eq. 8) 
 
 *

0C  (0,t) = C  = Constant ,   t > 0 ,       (Eq. 9) 
 
 **

z dC,  (L,t) = v  = Constant ,   t > 0 .       (Eq. 10) 
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Equation 9 represents a constant surface source of radionuclides such that the concentration in 
the recharge water is C0, while Equation 10 fixes the concentration gradient at the water table at 
vd

* in M/L4 units. 
 
Nonequilibrium Sorption Site Input Parameters 
 
The nonequilibrium sorption process in Equations 1 to 10 is defined by the two input parameters 
(f,�*).  When f = 1, there are no nonequilibrium sorption sites in the soil column, 0 < z < L; 
when f = 0, there are no equilibrium sorption sites in the column.  When 0 < f < 1, there are both 
equilibrium and nonequilibrium sites.  The quantity �* is the first order rate constant for 
nonequilibrium sorption and plays a key role in the decay/production term (D/P), in Equations 1 
and 2. 
 
To assess the effects of �*and (D/P) on the C* and S* distributions, Chen, et al. (4) let the initial 
distribution of C* and S* in the soil column be zero and postulated a constant source of 
contaminant at the surface (z = 0), see Equations 7 to 9.  For a contaminant whose half-life is 
much greater than its passage through the soil column (e.g., 99Tc), the effect of �* in Equations 1 
and 2 on the BTCs at the water table is greatly over shadowed by the decay/production term 
(D/P).  As the contamination process begins (t > 0), pollutant C* begins to spread throughout the 
water in the soil column.  This spreading of C* then produces a source of S* in the profile via the 
(D/P) term.  Thus, S* begins to spread throughout the soil matrix in the vertical column.  As long 
as S* is less than (1 - f) KdC*, (D/P) is a sink term for C* and a source for S*.  If S* > (1 – f) 
KdC*, then (D/P) is a source for C* and a sink term for S*.  Since the only other term in the S* 
equation is the very small term �*S* (assumed to be small at the moment, such as that for 99Tc),  
S* will rapidly approach the “equilibrium” condition for sufficiently large �*:   
 

* *
dS   (1 f ) K C .� �         (Eq. 11) 

As S* approaches the “equilibrium” condition, (D/P) turns off in the C* and S* equations.  If C* 
and S* do not become out of balance again, as defined by Equation 11, the nonequilibrium 
sorption process acts as an equilibrium sorption process as was evident in several cases analyzed 
by Chen, et al. (4).  Further, Equation 11 shows that for low Kd-pollutants (e.g., 99Tc), the 
amount of material adsorbed at the nonequilibrium sites at any given time is very small; while 
for high Kd-pollutants (e.g., 99Ru), the opposite is usually true.  Hence, for maximum nonequili-
brium sorption site effects, f should be small relative to unity, �* should be sufficiently small, 
�* should be sufficiently large relative to the pollutant’s passage through the soil column, and Kd 
should be larger than unity.  For minimal nonequilibrium sorption site effects, f should be close 
to unity, �* should be sufficiently large, �* should be sufficiently small, and Kd should be much 
smaller than unity.  The specific degrees of largeness and smallness for these various parameters 
can be determined by analyzing the exact solution of Equations 1 to 10, to which we now turn. 

Nondimensional Form of the Governing Equations 

The characteristic length and time are taken to be L and L2/D, respectively, while the 
characteristic concentration is taken as C0.  Thus, the nondimensional variables and parameters 
are given by: 
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 2x  z / L,  0  x  1;    tD / L ,    0,� � � � � � �     (Eq. 12) 

 * *
0C = C(x, ) = C (z, t)  C ;     S  S(x, )  S (z, t) ,� � � � �    (Eq. 13) 

 * 2 * 2  L / D ;      L / D  ,� � � � � �       (Eq. 14) 

where � and � are macroscopic Sherwood Numbers which are ratios of mass diffusivities (due to 
decay and phase transfer, respectively) to dispersive diffusivity (8).  Combining Equations 12 to 
14 with Equations 1, 2, and 7 to 10 results in the following nondimensional system: 
 

x xx d 0C,  2BC,   C,  C  (1 f ) K C  S / C  ,
�
� � � � � �� � � ��    (Eq. 15) 

 
t d 0S,  ( ) S  (1 f ) K C C ,� � �� � � �       (Eq. 16) 

 
C(x,0) = 0,  0 < x < 1 ,        (Eq. 17) 
 
S(x,0) = 0,  0 < x < 1 ,        (Eq. 18) 
 
C(0,�) = 1,  ��> 0 ,        (Eq. 19) 
 
C,x (1,�) = vd

* L/C0 = vd, � > 0 ,       (Eq. 20) 
 
where B is a mass transfer Peclet Number which is a ratio of bulk mass transfer to dispersive 
mass transfer (8): 
 

LQB   .
2D

�          (Eq. 21) 

 
TRANSFORMATION OF THE (C,S)-SYSTEM 
 
The next step in the solution process of Equations 15 to 20 is a series of transformations:  the 
elimination of S in Equation 15, the elimination of the 2BC,x term in Equation 15, and the 
Laplace transform of the resulting C-system. 
 
Elimination of S(x,�) 
 
The solution of Equations 16 and 18 for S in terms of C is given by 

 
� �

� � � �

d 0
0

d 0

S(x, ) = (1 - f) K C  exp ( )( )  C(x, ) d  ,

           = (1 - f) K C  exp ( )  * C(x, ) , 

�

� � � � �� � �� � �

� � � �� � �

�    (Eq. 22) 

 
where “*” indicates the convolution of two functions with respect to nondimensional time �.  
Substituting Equation 22 into Equation 15 results in the following: 
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 � �2

x xxC,  2BC,  = C,  - b - B +  +  C - a exp -(  + )  * C ,
�

� �� � � � � �� �   (Eq. 23) 
 
where a and b are defined by 
 
 2

da = -  (1 - f) K  0 ,� � �        (Eq. 24) 
 
 2

db = B  -  +  (1 - f) K  .� � �        (Eq. 25) 
 
Elimination of 2BC,x 
 
The 2BC,x term in Equation 23 can be eliminated by invoking the following substitution: 
 
  � �E(x, )  exp Bx  C(x, ) .� � � �       (Eq. 26) 
 
Substituting Equation 26 into Equations 17, 19, 20, and 23 defines the governing equations for 
E(x,�): 
 
 � � � �xxE,  - E,  b +  +  E + a exp -(  + )  * E = 0 ,

�
� � � � � �    (Eq. 27) 

 
 E(x,0) = 0 ,   0 < x < 1 ,       (Eq. 28) 
 
 E(0, �) = 1 ,  ��> 0 ,        (Eq. 29) 
 
 B E(1,�) + E,x (1,�) = V, ��> 0 ,      (Eq. 30) 
 
where V = exp(-B) vd = exp(-B) vd * L/C0 �  0. 
 
Laplace Transform of the E-System 
 
The Laplace transform of any admissible function F(x,�) is defined by Debnath (9) and Duffy 
(10): 

 � � � �
0

F(x,s)  L F(x, )  = exp s  F(x, ) d  .
�

� � � � � ��     (Eq. 31) 

Applying this operation to Equations 27 to 30 results in the following transformed system: 
 
 2E (x,s) - G (s) E(x,s) = 0 ,��        (Eq. 32) 
 
 E (0,s) = 1/s ,          (Eq. 33) 
 
 B E(1,s) + E (1,s) = V/s ,�        (Eq. 34) 
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where “   � ” and “   �� ” indicate first and second derivatives, respectively, with respect to x, and 
G(s) is defined by: 
 

 
1/ 2

aG(s)  s  µ  ω    b  .
s

� �
� � � � �� ��� ��	 


    (Eq. 35) 

 
SOLUTION OF THE TRANSFORMED E-SYSTEM 
 
The general solution of Equations 32 to 35 is given by 
 
 � � � �E(x,s)  A(s) sinh (1 x) G(s)   B(s) cosh (1 x) G(s)  ,� � � �   (Eq. 36) 
 
where A(s) and B(s) are determined from Equations 33 and 34.  Deriving A(s) and B(s) results in 
the following solution for the E system :�  
 

 

� �� � � �

� � � �

� �� � � �

� � � �

B  V cosh G(s)  sinh (1  x) G(s)
E(x,s)   

B sinh G(s)  + G(s)cosh G(s)

G(s) +V sinh G(s)  cosh (1 - x) G(s) 1                        .
B sinh G(s)  + G(s)cosh G(s)  s

� � �
� ��

��

�
� �

�	

  (Eq. 37) 

Tauberian Theorems 
 
Applying the Tauberian Theorems (9) allows the behavior of E(x,�) to be determined from the 
transformed function E(x,s)  if the limit of E(x,s)  as s → ∞ is zero.  This limiting condition is 
satisfied since for large s, E(x,s) is approximately equal to s-1 exp[-x G(s)] which approaches 
zero for all x, 0 < x < 1, as s → ∞.  The first Tauberian theorem is the Initial Value Theorem: 
 

 

� �� �

Lim Lim

Lim

 s E(x,s)  =   E(x, ) = E(x,0) ,s 0

                           =  exp x G(s)  =  0,    0 < x  1 ,s

� � ��
 ��	 


� ��


  (Eq. 38) 

 
which satisfies Equation 28. 
 
 For abbreviation purposes, let us consider the following: 
 
 � �W x,  G(s)  = s E(x,s) ,        (Eq. 39) 
 

 
1/ 2

aG = G(0) =  +  +  + b  ,
 + 

� �
� �� �� �	 


     (Eq. 40) 
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where G2 can be shown to be positive, and thus, G is taken as positive.  The second Tauberian 
Theorem is a Final Value Theorem: 
 

 
0

Lim Lim 1E(x, ) d  =  E(x,s) = W(x,G)     =  ,s 0 s 0 s

�

� � �
� ��    (Eq. 41) 

 
since W(x,G) is finite and nonzero.  This result is reasonable since Equation 29 gives a 
continuous and uniform source at the surface; hence, an infinite amount of material passes 
through the soil column in infinite time.  The third Tauberian theorem is another Final Value 
Theorem: 
 

 � �
Lim Lim Lim

 sE(x,s) =  W x,G(s)  =  E(x, ) = E(x) = W(x,G) , s 0 s 0 �
� � ���

 (Eq. 42) 
 
where E(x) is the steady state solution of the E-system in Equations 27 to 30, and this solution 
is equal to W(x,G). 
 
INVERSE LAPLACE TRANSFORM OF E(x,s)  
 
For an expression as complex as the formula for E(x,s) in Equation 37, the use of inverse 
Laplace transform tables, even a set of tables as extensive as those of Oberhettinger and Badii 
(11), is not very profitable.  A much better approach is to use the Bromwich integral 
 

 � �
c + i

c - i

1E(x, ) =  s  ds ,
2 i

 E(x,s) exp
�

�

� �

�
�      (Eq. 43) 

 
and contour integration in the complex s-plane. 
 
Location of the Singular Points of E(x,s)  
 
Considering Equations 35 and 37, we note that the radical G(s) produces no branch points since 
G(s) can be factored out of the numerator and denominator in Equation 37, leaving quotients of 
power series in terms of G2(s).  The expression E(x,s) has a simple pole at s = 0.  Since the term 
(s + � + �)-1 occurs in all integer powers in the above power series in G2(s), s = -(� + �) is an 
essential singular point.   
 
The final set of singular points of E(x,s) are obtained from  
 
 � � � �B sinh G(s)  + G(s) cosh G(s)  = 0 .      (Eq. 44) 
 
To find out where the roots of Equation 44 lie in the complex s-plane, let G(s) = i�n, �n > 0.  
Thus, Equation 44 reduces to the real transcendental equation tan(�n) = -�n/B.  The roots of this 
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equation can be obtained by a rapidly converging iterative process, and �n converges to (2n-
1)�/2, from the right, as n → ∞.  The values of the corresponding singular points sn in the s-plane 
are obtained from 
 

 2 2
n n n

n

aG (s ) = (s    )   + b = -  ;
s    

� � � � � �
� � � �

    (Eq. 45) 

 
or solving for sn, we have: 

 
1/ 2

2n n n
n

as  = -(  + ) -   1 +  ,� �
� � � � � � ��	 


     (Eq. 46) 

 

where � �2
n n =  b +   2.� � �   The roots sn, n = 1,2,3, …, for the “-“ sign in Equation 46 are more-

or-less equally spaced roots (i.e., simple poles) along the negative real s-axis to the left of s =  
–(� + �).  The roots sn, n = 1,2,3, …, for the “+” sign in Equation (46) can be shown to be 
negative for all n and to the right of s = –(� + �) on the real s-axis.  Further, as n → ∞, the sn to 
the right of s = –(� + �) approach s = –(� + �) in the limit.  Thus, s = –(� + �) is a very complex 
singular point, namely a nonisolated, essential singular point.  Except for the simple pole at s = 
0, all the singular points of E(x,s)  are along the negative real axis in the complex s-plane.  This 
is good since the Bromwich integral can be formulated in such a manner as to evade these 
singular points, especially the complex singular point at s = –(� + �). 
 
Bromwich’s Integral for E(x,�) 
 
The contour in the Bromwich integral in Equation 43, c - ∞i to c -i∞, c > 0, can be replaced by a 
contour along the imaginary axis, as shown in Figure 1, since there are no singular points of 
E(x,s) in the right-half s-plane.  The integration variable s along with the new contour is 
replaced by the following substitutions (10):  
 

 
 

Fig. 1.  The contour for the Bromwich integral of the inversion of E(x,s).  
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     � � � �

2

2

i  -0i:  s = exp -i ,  ds =  exp -i  d ,  0 <  <  ,2 2 2
half-circle c :  s =  exp i , ds = i  exp i  d ,  -  <  < ,    0 ,2 2

+0i  + i:  s = exp i ,  ds =  exp i  d ,  0 <  <2 2 2

�

� � �� � � ��� � � � � �� 	 � 	
� �
 � 
 � � � 
 �

� � �� � � �� � � � �� 	 � 	   .�

 (Eq. 47) 

 
In the evaluation of the three segments of the contour integral for E(x	�), the integrand 
E(x,s) exp(s,�
 must be expressed in terms of real and imaginary parts, each being a function of 
(x,�	�
�and the system parameters.  Considering E(x,s)  in Equation 37, one sees that the process 
starts with the radical term G(s).  First, the values of s = ±i �2/2 are substituted into G(s), giving 
the following: 
 
 � � � �

1/ 22G  i / 2  = C( )  iD( )  = H( )  iF( ) ,� � � � � � � �     (Eq. 48) 
 
where C(�), D(�), H(�), and F(�) will be defined later.  The next step is to express the 
hyperbolic functions of G(s) in terms of real and imaginary parts.  Then, the products in the 
numerators of E(x,s)  are expressed in real and imaginary parts; after that, the numerator in 
E(x,s)  is expressed in real and imaginary parts.  Finally, the expression for E(x,s) • exp[�s] is 
expressed in real and imaginary parts; the imaginary parts cancel out, while the real parts 
contribute to the integral.  The contribution from the semi-circle, C�, contour is ½ E(x), E(x) 
being the steady state solution in Equations 39 and 42. 
 
Form of the Solutions E(x,�) and E(x) 
 
The steady-state form of the E-system, along with its solution, is given in Table I.  This solution 
was derived from Equations 39 to 42.  The E-system itself, along with its time-varying solution, 
is summarized in Table II.  The E(x,�) solution was derived by following the steps in the 
previous  
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Table I.  The Steady-State E-System and Solution 

 
Governing Equations 

2 2 a
(x)  G E(x)  0,     0 x 1,     G      b  

 
E � � � � � � � � � �

� � �

��  

E(0)  1,    BE(1)  E (1)  V�� � �  
 

Solution of the System 
� � � � � � � �B - V cosh(G)  sinh (1 - x)G  + G + V sinh(G)  cosh (1 - x)G

E(x)  
B sinh(G) + G cosh(G)

�  

where 
1/ 2

a
G = +  +  + b + >  0

 + 
� �

� �

� �
� �� �

 

 
Table II.  The Time-Varying E-System and Solution 

 
Governing Equations 

E�� – E,xx + [b + �����] E + a exp[-(�����)�] * E = 0 
E = E(x,�),   0 < x < 1,     ��> 0 

E (x,0) = 0,   0 < x < 1 
E(0,�) = 1,   ��> 0 

B E(1,�) + E,x (1,�) = V,    ��> 0 
 

Solution of the System 

0

1 1
E(x, ) =  E(x) +  M(x, , , V) d

2

�

� � � �
�
�  

� � � �

� ��

1

2

1
M(x, , , V) = L (x, , V)  sin ( + )  +

                          + L (x, , V) cos ( + ) 

� � � � � ��
�

� � � ��

 

1 1 2 2
1 2 2

1 2

J (0, , 0)  J (x, , V) + J (0, , 0)  J (x, , V)
L (x, , V) = 

J (0, , 0) + J (0, , 0)
� � � �

�
� �

 

1 2 2 1
2 2 2

1 2

J (0, , 0)  J (x, , V) - J (0, , 0)  J (x, , V)
L (x, , V) = 

J (0, , 0) + J (0, , 0)
� � � �

�
� �

 

 
J1(x,�,V) = B sinh [(1-x) H(�)] cos[(1-x) F��)] + H(�) cosh [(1-x) H(�)] cos[(1-x) F(�)] + 

- F(�) sinh[(1-x) H(�)] sin[(1-x) F(�)] + V sinh[xH(�)] cos [xF(�)] 
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J2(x,�,V) = B cosh [(1-x) H(�)] sin[(1-x) F��)] + H(�) sinh [(1-x) H(�)] sin[(1-x) F(�)] + 
+ F(�) cosh[(1-x) H(�)] cos[(1-x) F(�)] + V cosh[xH(�)] sin [xF(�)] 

� �
1/ 2

1/ 22 21
H( ) =  C ( ) + D ( )  + C( )

2
� � � �

� �
� �� �� �� �

 

� �
1/ 2

1/ 22 21
F( ) =  C ( ) + D ( )  - C( )

2
� � � �

� �
� �� �� �� �

 

2

a 1
C( ) =  +   b +    > 0,      0    

 + 1 + 
� � � � � � � �

� � �

� �
� �
� �

�  

2

a 1
D( ) =  +       > 0,       > 0;   D(0) =  0

 + 1 + 
� � � � � �

� � �

� �
� �
� �

�  

 
paragraph.   For convenience sake, the �-variable of the previous paragraph was replaced by � 
defined by: 
 
 2 =   2(  + ) ,       d    = d   2  .� � 	 
 � � 	 � � 	 �     (Eq. 49)  
 
Important Properties of E(x,�) and E(x) 
 
As ��→ ∞, E(x,�) should approach E(x).  This can best be seen by replacing ����	�� in 
M(x,�
�
V) in Table 2 by �.  The differential d����is replaced by d���, L1(x,�
V) approaches E(x) 
as ��→ ∞, and L2(x,�
V) approaches zero.  Thus, we have: 
 

 
0

1 1 sin( ) 1 1E(x, ) = E(x) E(x)  d  = E(x) + E(x)  = E(x) .
2 2 2

�

� �
� � �

� � ��  (Eq. 50) 

 
The solution for E(x,�) given in Table 2 is only meaningful if the integral of M(x,�
�
V) 
converges for large and small values of �.  As � approaches zero through positive values, one 
can show that L1(x,�
V) approaches a bounded function B1(x,V), while L2(x,�
V) approaches 
B2(x,V)� , where B2(x,V) is also bounded.  Thus, for small �, we have: 
 
 M(x,�
�
V) ≈ [B1(x,V)�����	�����B2(x,V)��
 ÷ � = Bounded .   (Eq. 51) 
 
For large values of �, one can show that both L1(x,�
V) and L2(x,�
V) can be approximated by 
the following type of expression: 
 
 � � � �1 2 3 4L (x, ,V) or L (x, , V) B exp (x 1)m B exp xm  ,� �� � � � � � � � � �� 	  

           (Eq. 52) 
where B3 and B4 are bounded functions, and m is a positive constant.  For 0 < x < 1, Equation 52 
shows that M(x,�,�,V) decays exponentially as � → ∞.  For x = 1, Equation 52 shows that 
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M(x,�,�,V) decays as �-3/2.  Thus, for 0 < x < 1 and � > 0, the integral of M(x,�,�,V) in the 
solution given in Table 2 is well-behaved. 
 
In Table 1, we can see that E(0) = 1.  Further, from Table 2, we can see that L1(0,�,V) = 1 and 
L2(0,�,V) = 0.  Combining these results gives the following: 
 

 
0

1 1 sin[( ) ] 1 1E(0, ) =   1 +    d    +    1,   0 .
2 2 2

�

� �� �� �
� � � � � �

� � ���  (Eq. 53) 

 
Assuming that the solution E(x
�) given in Table 2 satisfies the initial condition E(x,0)= 0, 0 < x 
< 1, we obtain the following identity: 
 

 2

0

2 L (x, , V)E(x) =     d   0 x 1 ,
�

�
	 � � 
 


� ��     (Eq. 54) 

 
where more will be said about this identity later. 
 
The quantities E(x) and E(x
�) satisfy the boundary condition at x = 1.  From Table 1, we see that 
B E(1) and E'(1) = V.  Further, from Table 2, we see that 
 
 1 1 2 2B L (1, ,V) + L (1, ,V) V ,       B L (1, , V) + L (1, , V) 0 ,  � �� � � � � �   (Eq. 55) 
 
where the prime indicates the derivative with respect to x.  Combining these results leads to the 
following: 
 

 x
0

V V sin[( )B E(1, ) + E, (1, ) =  +    d  = V,    > 0 .
2

�

� �� ��
� � � �

� ��   (Eq. 56) 

 
Considering the functions in Table 2, one can show that 
 

 xx
D( )M, (x, , ,V) = C( ) M(x, , ,V) +  M, (x, , , V) .

( + ) �

�
� � � � � � �

� � �
  (Eq. 57) 

 
Further, the convolution integral in the governing equation for E(x,�	�can be written as: 
 

 �

� �

2
0

2
0

1 2
2

0

a 2 M(x, , , V)a exp[-( ) ]*E(x, )   E(x)    d   +
2( ) 1

M, (x, , ,V)2 a exp[-( ) ]        -    d   -  E(x)
( )(1 ) 2( )

2 L (x, , V) - L (x, , V)        -    d    .
1

�

�

�

�

� � �
� �� � � � � ��� �� 	 � �


�� � � �� �
� ��	 � �� � � � ��


�� � �
��

	 � � � �


�

�

�

 (Eq. 58) 
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Using these results, we see that the specific E(x) and E(x,�) in Tables 1 and 2, respectively, 
satisfy the governing equation for E(x,�) if the following identity is satisfied: 
 

 
� �

1 2
2

0

2 L (x, ,V) - L (x, ,V) E(x) =   d  ,    0  x  1 ,
1 + 

�

� � �
� � �

� � �
�    (Eq. 59) 

 
where the integral is defined at x = 0,1 such that E(0) = 1, and B E(1) + E'(1) = V. 
 
Given the identities in Equations 54 and 59, we can derive the following set of identities: 
 

 1 2
2

0

L (x, , V)   L (x, , V) d  = 0 ,    0 < x < 1 ,
1 + 

�

� � � �
�

��     (Eq. 60) 

 

 1
0

 L (x, , V) d  = 0 ,    0 < x < 1 .
�

� ��       (Eq. 61) 

 
These integrals converge for 0 < x < 1, and can be shown to be logically equivalent to Equations 
54 and 59.  For given sets of the system parameters defined in the “Governing Equations” 
section, we have numerically shown that Equations 60 and 61 are satisfied, which in turn, 
indicates that Equations 54 and 59 are satisfied, and that E(x) and E(x,�) in Tables 1 and 2 are 
respectively the steady-state and time-varying solutions of the E-system of Equations 27 to 30. 
 
THE EQUILIBRIUM SITE SOLUTION 
 
The equilibrium site solution is defined by the parameters (f,�) = (1,0).  For these parameters,  
a = 0, b = B2, and G2 = � + B2.  The governing equation for E(x,t), Equation 27, reduces to 
 
 E,��– E,xx + G2E = 0 .        (Eq. 62) 
 
Thus, the steady-state and time-varying solutions of Equations 62 and 28 to 30 have the same 
form as those given in Tables 1 and 2, except the functions on which M(x,�
�
V) depends are 
simpler.  For example, C(�) = G2 and D(�) = ��.  These two functions simplify the partial 
derivative of M(x,�
�
V) in Equation 57: 
 
 M,xx(x,�
�
V) = G2 M(x,�
�
V) + M,�(x,�
�
V) .    (Eq. 63) 
 
Using Equation 63 and the fact that E"(x) = G2 E(x), one can easily show that the solution in 
Table 2 satisfies Equation 62.  Further, this reduced solution satisfies the boundary conditions in 
Equations 29 and 30, as well as the limit E(x, )   E(x) as    .� � � � �  The initial condition in 
Equation 28 leads to the identity given in Equation 54.  Combining this identity with the 
differential equation E"(x) = G2 E(x) leads to the identity in Equation 61.  Conversely, the 
identity in Equation 61 leads to the identity in Equation 54. 
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A STEPWISE VARIABLE SOURCE AT THE SURFACE 
 
The first step in replacing the unit source at the surface of the E-system by a stepwise variable 
source is to replace Equation 29 by  
 
 E(0,�; V,W) = W,  � > 0 ,        (Eq. 64) 
 
where W is a nonzero constant.  For convenience, the solution of Equations 27, 28, 64 and 30 is 
now denoted as E(x,t; V,W).  The corresponding steady state solution is denoted by E(x; V,W).  
It can be shown that 
 

 V VE(x, ;  V,W) = W E x, ; ,1  ,    E(x;  V,W) = W E x; ,1  ,
W W 

� � � �
� �� � � �

� � � �
 (Eq. 65) 

 
where E(x
�; V/W, 1) and E(x; V/W, 1) are the time-varying and steady-state solutions given 
respectively in Tables 2 and 1 when the V in these tables is replaced by V/W. 
 
The next step in the process is to translate the source given in Equation 64 �a time units to the 
right (Figure 2) and to set V = 0 in Equation 30.  The time translation can be accomplished 
through the use of  Heaviside’s step function, H(� - �a).  The corresponding solution for 
Equations 27, 28, and 30 and the source strength (SS) given in Figure 2 is as follows: 
 
 
 

 
 

Fig. 2.  Translation of the surface source �a time units to the right. 
 
 
 

E(x,�; 0, Wa)  =  H(� - �a) E(x, � - �a; 0, Wa) 
 

   = Wa H(� - �a) E(x, � - �a; 0,1) 
 
   = 0,       � < �a, 
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   = Wa E(x, � - �a; 0,1),   � > �a,     (Eq. 66) 
 
where the M(x,�� - �a, �; 0,1) of Table 2 is given by  
 

 
�

�

a 1 a

2 a

1M(x,   - ,  ;  0,  1)   L (x,  ;  0,  1)  sin[(  + ) (  - )] +

                                       + L (x,  ;  0,  1) cos[(  + ) (  - )]  .

� � � � � � � � �
�

� � � � �

  (Eq. 67) 

 
The steady-state solution corresponding to E(x,�; 0, Wa) is given by 
 

 a a
a

W  B sinh[(1-x)G] + W  G cosh[(1-x)G]E(x;0, W ) = 
B sinh[G] + G cosh[G]

   (Eq.68) 

 
The last step in the process is to take a finite number of source strengths of the type in Figure 2 
and superimpose them in such a way as to form a stepwise variable source (Figure 3).  Thus, 
Equation 29 is replaced by the following sum: 
  
 
 

 
 

Fig. 3.  A stepwise variable source strength at the surface, where 0 0Ŵ  = W  and �0 = 0. 
 
 

N

0 i i
i = 1

ˆE(0, ;  V, SS) = W H( ) + W  H(  - ) ,� � � ��      (Eq. 69) 

 
where 0 0, 0 i i i 1

ˆ ˆ ˆW  = W   = 0, W  = W  - W
�

�  (i = 1,2, …, N).  The solution of Equation 27, 28, 69 and 
30 is given by 
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 0 0 i i i
i 1

E(x, ;V,SS) = W  E(x, ;V ,1) + W  H(  - ) E(x,  - ;0,1) ,
�

�

� � � � � ��   (Eq. 70) 

 
where V0 = V ÷ W0.  The corresponding steady-state solution is given by 
 

 � �NŴ B sinh[(1-x)G] + G cosh[(1-x)G]  + V sinh(xG)
E(x;V,SS) = 

B sinh[G] + G cosh[G]
 , (Eq. 71) 

 
where V ≤ 0 and NŴ ≥ 0.  If NŴ  = 0, then V must be zero to prevent unrealistic negative 

concentrations.  If NŴ  > 0, then realistic concentrations can occur for right combinations of the 
system parameters. 
 
SUMMARY AND CONCLUSIONS 
 
The objective of this paper was the derivation of an exact solution of a system for the assessment 
of the nonequilibrium sorption of radionuclides in a finite depth, vadose zone. There are eight 
key steps in the process of this derivation and subsequent analysis of the solution. These steps 
are briefly summarized in the following: 
 

1. The dimensional system and its parameters are defined in Equations 1 to 11.  Using 
the characteristic quantities in Equations 12 to 14, the corresponding nondimensional 
system for (C,S) is given by Equations 15 to 21, where C is the nondimensional 
concentration of the pollutant in solution, and S is the nondimensional concentration 
at the nonequilibrium sorption sites in the vadose zone. 

2. The (C,S) system experiences three transformations.  The first is the elimination of S 
in the C governing equations, Equations 22 to 25.  The second is the elimination of 
the advective term in the C governing equation, Equation 26.  This results in an E- 
system defined by Equations 26 to 30, where E is the modified, nondimensional 
pollutant concentration in solution.  The third transformation is the Laplace 
Transform (Equation 31) of the E-system leading to an E system� defined by 
Equations 32 to 35. 

3. The E-system is solved by elementary techniques of ordinary differential equations 
giving the results in Equations 36 and 37.  From this solution, the Tauberian 
Theorems allow information to be obtained about the initial and final values of the E- 
system solution, Equations 38 to 42. 

4. The complexity of the E system� solution in Equation 37 leads to the use of the 
Bromwich integral in obtaining its inverse Laplace Transform (Equation 43) which 
results in the solution of the E-system.  To apply the Bromwich integral, the singular 
points of  E(x,s) in the complex s-plane have to be located (Equations 44 to 46), and 
the path of integration (Figure 1) has to be determined (Equations 47 to 49).  The 
resultant steady-state solution E(x) and the time-varying solution E(x,�) are 
respectively given in Tables 1 and 2. 



WM’02 Conference, February 24-28, 2002, Tucson, AZ 

 19

5. Given these expressions in Tables 1 and 2, we were able to verify several properties 
of the solutions.  Through a change of variable, the limit of E(x,�) as ��→ ∞ is indeed 
equal to the steady-state solution E(x), Equation 50.  The infinite integral in the 
solution E(x,�) is well behaved over the entire interval 0 < � < ∞, Equations 51 and 
52.  The boundary conditions in Equations 29 and 30 are satisfied by both E(x,�) and 
E(x), Equations 53, 55 and 56.  The functions making up the solution E(x,�) are such 
that the partial differential equation for E(x,�) is satisfied (Equations 57 and 58).  In 
the satisfaction of the initial condition in Equation 28 and the partial differential 
equation, two identities were obtained, Equations 54 and 59.  These two identities are 
logically equivalent to two other identities, Equations 60 and 61.  The authors 
numerically verified these last two identities for certain combinations of the system 
parameters. 

6. Setting the parameters (f,�) equal to (1,0) in the expressions in Tables 1 and 2 results, 
respectively, in the steady-state and time-varying solutions for the equilibrium site 
situation.  These new solutions satisfy the proper one-site, equilibrium-type 
equations (Equations 62 and 63), and lead to only one identity, Equation 54, and its 
logical equivalent Equation 61. 

7. The E-system in Equations 27 to 30 can be extended to account for a stepwise 
variable source at the surface.  The first step in this process is an improvement in 
notation (Equations 64 and 65), followed by a temporal translation in the source term 
(Figure 2, and Equations 66 to 68).  Through the use of Heaviside’s step function, 
the steady-state and time-varying solutions for a stepwise variable source are obtained 
(Figure 3, and Equations 69 to 71). 

 
The eighth step in the solution process is the transformation of the various E(x,�) results back to 
nondimensional concentrations C(x,�) and dimensional concentrations C*(z,t), as well as 
determining the nonequilibrium sorbed phase concentrations, S(x,�) and S*(z,t).  Given (C,S), 
the quantities (C*,S*) can be determined from the transformations given in Equations 12 to 14.  
The concentration C(x,�) can be obtained from E(x,�) through the use of Equation 26.  The 
sorbed concentration S(x,�) can be determined from E(x,�) by using Equations 22, 26, 58 and 59, 
and the formulas in Table 2: 
 

d 0 1 2
2

0

2 1
2

(1 - f) K  C  exp[Bx] 2 L (x, , V)  L (x, , V)S(x, ) =  E(x) +  sin[( + ) ] +
2(  + ) (1 )

L (x, , V)  L (x, , V)               +  cos[(  + ) ]  d  .
(1 )

�� �� � 	 � �
� � � ��
�� � � � 	 �
�

��� � � �
� � �� �� �� 	 � � �

�
 

           (Eq. 72) 
 
Replacing [������	���] in the integral of Equation 72 by �, we can show that d��� is replaced by 
d���, and that � → 0, L1 → E(x), L2 → 0, as � → ∞.  Thus, the steady state value of S(x,�) is 
given by 
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 d 0 d 0(1-f) K  C (1-f) K  CS(x, ) =  exp[Bx] E(x) =  C(x, ) . 
 +  + 

� �
� �

� � � �
  (Eq. 73) 

 
This result is consistent with the steady-state solution obtained from Equation 16.  Further, if � 
>> �, then � ÷ (�����	 ≈ 1, and Equation 11 is valid.  That is to say, given the decay rate���and 
given a sufficiently large sorption rate �, then the nonequilibrium sorption sites tend to act as 
equilibrium sorption sites.  Invoking the identity in Equation 59, we see that Equation 72 
satisfies the initial condition S(x,0) = 0. 
 
Several improvements or extensions of these solutions will be considered in the future: 
 

�� The four identities in Equations 54, 59, 60 and 61 will be further analyzed and 
verified for various combinations of the system parameters. 

�� The solutions will be efficiently programmed and comparative studies for the system 
parameters will be conducted. 

�� Stepwise variable boundary conditions at the water table will be introduced. 
�� A zero-order production term will be introduced into the governing equations for C* 

and S*. 
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