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ABSTRACT 

 
This paper presents the results of an ongoing research and development project 
conducted by Russian institutions in Moscow and Snezhinsk, supported by the 
International Science and Technology Center (ISTC), in collaboration with the 
University of Oklahoma. The joint study focuses on developing and applying 
analytical tools to effectively characterize contaminant transport and assess risks 
associated with migration of radionuclides and heavy metals in the water column and 
sediments of large reservoirs or lakes. The analysis focuses on the development and 
evaluation of theoretical-computational models that describe the distribution of 
radioactive wastewater within a reservoir and characterize the associated radiation 
field as well as estimate doses received from radiation exposure. The analysis focuses 
on the development and evaluation of Monte Carlo-based, theoretical-computational 
methods that are applied to increase the precision of results and to reduce computing 
time for estimating the characteristics the radiation field emitted from the 
contaminated wastewater layer. The calculated migration of radionuclides is used to 
estimate distributions of radiation doses that could be received by an exposed 
population based on exposure to radionuclides from specified volumes of discrete 
aqueous sources.  The calculated dose distributions can be used to support near-term 
and long-term decisions about priorities for environmental remediation and 
stewardship.  
 
INTRODUCTION 
 
The use of theoretical-computation methods to estimate the transport of contaminants 
and assess risks to human health can help inform decision-making about remediation 
and stewardship priorities [1 – 2]. However, because conventional analyses 
underestimate the uncertainty associated with estimates obtained from observational 
data, they can be sensitive to the range of parameter values [3]. The use of Monte 
Carlo methods provides a means for the formal incorporation of uncertainty about 
parameters into risk assessment [4]. In this paper, we apply Monte Carlo methods to 
investigate the migration of radionuclides in contaminated environments. Specifically, 
we focuses on the development and evaluation of theoretical-computational models 
that describe the distribution of radioactive wastewater within a reservoir and 
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characterize the associated radiation field as well as estimate doses received from 
radiation exposure. 
 
Since the 1940s, a large volume of radioactive wastes including high level waste from 
reprocessing, spent nuclear fuel, transuranic waste (TRU), and mixed wastes has been 
generated and released in the Russian Federation and other newly independent states 
of the former Soviet Union. In some cases, because radionuclides and heavy metals in 
those waste streams have contaminated the water column and sediments of large 
reservoirs and lakes, simplified turbulence diffusion models that use a distribution 
function to describe contamination averaged by lake depth have been used to estimate 
radionuclide migration [5]. In most natural lakes, however, the depth is much less 
than the width of the lake. 
 
In this paper, we present the results obtained for a homogeneous reservoir in which 
the rate of mixing inside the reservoir is much greater than the rate of water 
interchange external to the system. The average contaminant concentration is identical 
on all horizontal planes of the reservoir, but it can differ vertically (by depth). The 
precipitation of radioactive sediment that was once suspended in the water column 
can be both irreversible and convertible. To account for 137Сs penetration in an 
aqueous environment, we monitored the migration of the contaminated wastewater 
layer as it dispersed and settled to the bottom of the reservoir and estimated the 
potential radiation dose as information relevant for the purposes of planning 
remediation strategies [6]. The distribution of radionuclides between the solid and 
liquid phase is important when describing the behavior of the radionuclides. For 137Cs, 
the value of this distribution parameter in fresh water reaches ~10,000, therefore, a 
large fraction of radionuclides in the wastewater layer is combined with the suspended 
sediments [7]. Different turbulence diffusion models that simulate the transport of 
radionuclides in contaminated environments must be utilized to account for the 
precipitation of sediments from wastewater. 
 
ADVANTAGE OF A MONTE CARLO METHOD 
 
As noted above, there many problems in which analog methods of simulating physical 
process are computationally inefficient, and occasionally, yield erroneous results. 
Calculating the radiation field characteristics over large distances from a 
contaminated source may result in an increasing estimate of variance. This behavior is 
defined as a lifetime expansion of particles (rays) and essential deviation of the 
distribution of the sampling average on the number of histories from a normal 

distribution [8]. The distribution )(xf N  of sampling average Nx  on a small 

number of the histories N  occurs as an asymmetric relative expected value Mx, 

so that the most probabilistic values are Nx  < Mx. The gradual decrease of 
)(xf N  at Mxx �  maintains the conservation of the mean value, and the reduced 

distribution more often results in an underestimation. Using Monte Carlo methods to 
estimate the radiation field characteristics over the irregular geometry of large 
reservoirs or lakes provides a more efficient technique to incorporate the large outlier 
values that occasionally influence the distribution and provides a more accurate 
estimate.  



WM’02 Conference, February 24-28, 2002, Tucson, AZ 

 

 

3

 
DEVELOPMENT OF MODIFICATIONS OF A MONTE CARLO METHOD 
 
For many radiation physics problems, we have designed effective non-analog 
modifications of a Monte Carlo method based on substituting  “altered” distributions 

in place of real physical distributions [9]. The "biased" cross-section ��  in the 
probability density function for the free path t  is given by Equation 1: 

 

dttdttp )exp()( �������� ,     (Eq. 1) 

Equation 1 minimizes the variance of a random variable 
2/re r��

, proportional to 
the contribution of the next scattering point to the point detector (MD-method).  
 
We introduce a weight factor: 

])(exp[1 tW �������
��

�
� ,       (Eq. 2) 

In Equation 2, �  is the real cross-section of photon interaction in matter. 
 

The cross-section ��  is continuously carried out on a particle history sequence. This 
cross-section is defined by Equation 3: 
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k  and �cos�� Rm  that 

correspond to the geometry of a location of represented by nS , the scattering point 
and a pointed detector (Figure 1). 
 
The appropriate contributions of the particles (rays), which scattered near a point 
detector a great distance from a source, are precisely valued. This simulation results in 
an optimal choice of assumed trajectories. The algorithm of a MD-method can be 
included by a conventional manner in the common scheme of a flux-at-a-point 
estimation. 
Further development of the computational algorithm was carried out by revision of 
the flux-at-a-point estimation, utilizing "altered" representation of a collision kernel of 
Boltzmann transport equation. This modification applies a biasing of the polar 
scattering angle based on the common concept of a reduced variance of the estimated 
result [10]. 
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The following expression represents the single-scattered photon radiation: 
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(Eq. 4) 
Where:  

eN - electron density of a matter;  

)(�
�d

d�
 - Klein-Nishina differential cross-section;  

)( E�  and )(E ��  - the cross-sections for energy before and after a scattering 
accordingly. 
 
We have included a singularity of �sin/1  into a density function. We then 
received the following distribution of a density scattering function into a solid angle 
�d : 
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along a conditional weight factor 
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In this case, the sampling of a polar angle of scattering �  is described by the 
following formula: 
 

)1( ������ ,        (Eq. 7) 

where � is a random number uniformly distributed on the interval (0,1). Using 
these modifications has considerably increased the capability of a computational 
algorithm that uses a Monte Carlo method [9]. 
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An important property of Equation 5 is the acceleration of a convergence of the 
results that are comparable with the usual flux-at-a-point estimations. We designed a 
non-analog simulation process mode of radiation transfer resulting in a finite variance 
as well. The flux estimation from each collision point in the selected point was carried 
out on a single-scattered radiation integral (Equation 4). 

Sn                          R                            D 

�                            �

�1

Fig. 1 Geometry of the developed algorithm ( nS  - nth scattering point; D  – a point detector) 
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APPLICATION OF ADJOINT TRANSPORT EQUATION 
 
We took advantage of an adjoint transport equation solution using the Monte Carlo 
method for problems where the geometry was instituted by a space-distributed source 
and a point detector. The integral-differential form of an adjoint transport equation is 
given by Equation 8: 
 

������������
�� ),,(),(),,( ErErEr t  

),,(),,(),,,( ErDEddErEErS �����������������
�

� . (Eq. 8) 

Here ),,( Er ��
�

 is an adjoint function or a value function [7]. The solution of 
an adjoint transport equation is based on the inverse theorem and results from the 
following expression: 
 

� ���
� dEdrdErSErJ ���� ),,(),,(

.    (Eq. 9) 
The convolution equation (Equation 9) adequately estimates the functional using a 
solution of a direct transport equation with the substitution of an adjoint function, a 
source function on a flux, or a detector function accordingly. The solution of Equation 
8 by the Monte Carlo method means that the architecture of an adjoint random walk 
of abstract particles known as pseudo-quanta is employed. The basic simulation 
difficulty of such process is connected to the kernel of Equation 8. This kernel 
controls the collision of the pseudo-quanta such that they increase energy under the 
reversed Compton scattering after interaction.  Equation 10 solves for the energy of 
the pseudo-quanta 
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where E�  and E  the values of energy before and after a collision accordingly, S�  

is the scattering angle, and 511.02
0 �cm  MeV is a rest energy. We suggested the 

following function for a choice of increasing energy after a collision [12]: 
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where )(ES�  is an integrated microscopical scattering cross-section, 
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Using the density function presented in Equation 11 with the condition that allows for 

the deletion of divergences associated with maxE , for all possible values of scattered 
energy. Because of physics, the pseudo-quanta energy value cannot exceed the larger 
source energy value, SE . Thereby, the pseudo-quanta energy "is locked" inside the 
existing energy interval. This last condition simultaneously moderates the pseudo-
quanta value of energy of each interaction. The simulation increases the number of 
scatterings per history and illustrates the importance of each history. 

The next choice for the value of energy 
�E  is made by a Neumann method with a 

weighting factor: 
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USAGE OF SOME SIMPLE APPROXIMATIONS 
 
Sometimes it is possible to avoid applying a Monte Carlo method by utilizing semi-
analytical methods in calculations that permit reasonable, accurate results for simple 
geometries. As a rule, such methods are based on integrating a transport equation 
point kernel. Otherwise, the volume source is represented by a superposition of point 
isotropic sources [15]. The following paragraphs give examples of volume self-

absorbing sources with an equally distributed volume activity Vq .  
 
The self-absorption of an unscattered flux behind a protective layer with a thickness 

of b  for a cylindrical source (R  - radius and h  - height) is found in Equation 13: 
 

),,,(
2

bhhahRZq
S

S

v
�
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,         (Eq. 13) 

with parameter ( h
R

) varying within the limits 0.1÷2.0; parameter ( h
a

) varying 

within the limits from 0 up to 1.0; S�  as a linear attenuation coefficient in matter of 

a source 101,0 ��S� ; and b  as a shielding thickness expressed in terms of a 
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mean free path (0÷10). The values of function Z  for a point on a surface of the 

cylinder ( 0�a ) without shielding ( 0�b ) are given in Table I [14]. 
 
 

Table I. Values of function )0,,0,( hhRZ S� . 
 

�Sh R/h 
0,1 0,3 0,5 1,0 2,0 3,0 5,0 � 

0,1 0,01504 0,04413 0,07198 0,1368 0,2516 0,3437 0,4988 1,0 
0,5 0,06418 0,1796 0,2798 0,4770 0,7185 0,8450 0,9509 1,0 
1,0 0,1070 0,2875 0,4312 0,6754 0,8932 0,9645 0,9960 1,0 
2,0 0,1583 0,4008 0,5706 0,8075 0,9561 0,9885 0,9990 1,0 

 

The flux from an infinite slab with a thickness ofh  behind shielding b  is given in 
Equation 14: 
 

� � � �� �hbEbEq
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���� 222 ,         (Eq.14) 

in which 
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 - an integrated exponential function and the substitution 

gives in following expression 1)0(2 ��bE . 

Equation 15 gives the flux from a semi-infinite dimensional source ( ��hs� ) 

behind shielding b : 

� �bE
q

s

v
22�

��
.            (Eq. 15) 

It is possible to take advantage applicable dose coefficients [13] linking specific 
activity of water and dose rate for rough estimations of the dose of external radiation 
potentially received. Presented above, equations 13 through 15 allow the calculation 
of unscattered radiation characteristics. In reality, we must allow for the contribution 
of scattered radiation from the source matter. The approximated account of photon-
scattered radiation in matter from an infinite source can be estimated using an 
exponential representation of the buildup factor [11] for a point isotropic source is 

)exp()1()exp( 2111 dAdAB ���� ������� , in which a linear 

attenuation coefficient �  is accepted as source material. It is necessary to multiply 
the corresponding flux on values by buildup factors to compute the total flux for 

different sources. But, there is a large uncertainty in the choice for distance d . 
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We used the gamma method with a principle of radiation equal balance to reduce the 
estimate of scattered radiation for semi-infinite and infinite volume-equal sources 
given in Equation 16: 
 

mmqD ��
�
����

�

2 ,         (Eq. 16) 

in which mq  is specific activity of a source and m�  is a mass absorption 

coefficient of energy for photons in a source material. �
�  is a Kerma constant for 

energy threshold � . 
 
RESULTS 
 
In Figure 2, three general migration scenarios for 137Cs, which is contained in a 
contaminated layer of reservoir water, are illustrated: 
 
�� Scenario a) is the result of precipitation activity on the reservoir surface. The 

contaminated layer of water is spreading step-by-step throughout whole volume of 
the reservoir. There is a self-cleaning of water due to gravitation precipitation, and 
full activity proceeds in the bottom sediments. 

�� Scenario b) is the precipitation of the radioactive layer at various speeds in such a 
manner that the low side spreads faster than high side. 

�� Scenario c) is the uniform precipitation with a thickness 10 cm for the radioactive 
layer. 

 
Figure 3 shows the calculated dose distributions by the Monte Carlo method on the 
water surface of the cylindrical reservoir. In all calculations, the value of the specific 
activity was 1.0 becquerel per liter (Bq/L) for a completely filled reservoir. Two 
processes are considered in Figure 3. The first process is associated with a slow 
infiltration of contamination on the entire volume of the reservoir. The second process 
is associated with a self-cleaning of water. As a result of self-cleaning, an upper layer 
of clean water is created. This layer is shielding against irradiation on the surface of a 
reservoir.  
 
Figure 4 shows the behavior of the dose buildup factor and the contribution of the 
scattered radiation from the radioactive water layer. The calculations reveal an 
important conclusion about solving problems using Equations 13-16. Estimated dose 
values appear to be half of what is expected when using the more convenient 
equations when there is a slow precipitation of radioactive sediments. However, in the 
other case (see Figure 4а) the underestimation can be very large (to two orders). Table 
II lists the results of the dose estimates obtained as by a Monte Carlo method, and 
other methods for various cylinders, up to semi-infinite geometry. The results are 
given both for a non-scattered dose 0D , and for a total dose D  simultaneously with 

the dose buildup factor DB . For a semi-infinite source, the values of a non-scattered 
and a total dose are obtained using Equations 15 and 16, respectively. 
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Table II. Comparison of the dose results in the units of picoGray (pGy) received by a 

Monte Carlo method and a numerical method. 
 

Sizes of cylinder Numerical 
integration 

Monte Carlo method 

Radius, cm Height, cm D0, pGy D0, pGy D, pGy BD 

25 50 1.65E-02 1.69E-02 3.00E-02 1.8 
50 100 1.77E-02 1.80E-02 3.80E-02 2.1 

100 200 1.79E-02 1.80E-02 3.81E-02 2.1 
150 300 1.78E-02 1.80E-02 3.80E-02 2.1 
200 400 1.77E-02 1.80E-02 3.90E-02 2.2 
300 600 1.78E-02 1.82E-02 4.00E-02 2.2 
400 800 - 1.83E-02 3.88E-02 2.1 

� � 2 - 1.82E-02 4.78E-02 2.6 
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Fig. 2. Various scenarios illustrating the migration of a radioactively contaminated 
wastewater layer.
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Fig. 3.  Dependence of the calculated dose rates based upon the depth of the center of 
the radioactive wastewater layer relative to the surface of a reservoir with a 200 cm 
radius and 400 cm height  (a, b, and c correspond to scenarios a, b, and c, respectively).
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Figure 4. Relationsp of the calculated dose buildup factor and the depth of the 
center of the radioactive wastewater layer relative to the surface of a reservoir with
a radius of 200 cm and a height of 400 cm. (a, b, and c correspond to scenarios a, b, 

and c, respectively) 

Fig. 4. Relationship of the calculated dose buildup factor and the depth of the center of 
the radioactive wastewater layer relative to the surface of a reservoir with a radius of 
200 cm and a height of 400 cm. (a, b, and c correspond to scenarios a, b, ad c, 
respectively) 
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CONCLUSION 
 
Using simple methods for calculating radiation field characteristics in large reservoirs 
or lakes can result large errors in characterizing contaminant migration and potential 
exposure. This study demonstrates the advantages of using the Monte Carlo method to 
calculate radiation field characteristics and estimate the impact on the potential 
radiation doses received that result from exposure to contaminated wastewater. Non-
analog simulation of photon radiation using an adjoint Monte Carlo method allows 
efficient calculations of transport for a three-dimensional problem. The calculated 
characteristics provide information about the migration of a radioactive water volume 
that can inform decisions about possible remediation and stewardship activities.  
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