AMEC 1.2 "A MODULAR MOBILE TREATMENT FACILITY FOR LIQUID RADIOACTIVE WASTE – PROJECT DESCRIPTION AND COMPARISON OF LIQUID LOW-LEVEL RADIOACTIVE WASTE TECHNOLOGIES "IN USE" OR PLANNED FOR NORTHWEST RUSSIA"

Carl Czajkowski Brookhaven National Laboratory, Building 830, Upton, NY 11973, USA

Stephen R. Gorin, Jerry V. Fox Los Alamos Technical Associates, Inc., Golden, CO 80401, USA

Robert S. Dyer US Environmental Protection Agency, 401 M Street S.W., Washington, DC 20460, USA

ABSTRACT

A number of sites have been identified in remote coastal locations in the Russian Northwest Arctic where complex liquid radioactive wastes (LRW) have been stored. These radioactive wastes are mostly stored in tanks under environmentally unsafe conditions within close proximity to the Arctic coast. The LRW are the result of nuclear submarine decommissioning activities related to arms reduction during the post-Cold War period. The conditions of storage and general circumstances of the remote coastal naval facilities prevent the off-loading from these storage tanks onto surface ships for transport to the fixed liquid radioactive waste processing facility at Murmansk, Russia. In addition, some of the radio-nuclides, the extremely high salinity content and specific organic contaminants present in some of the LRW are outside the design capabilities of the existing low-level liquid radioactive waste (LLRW) processing capabilities in Russia. Also, the tanks containing the LRW were not intended for long- term storage of such wastes, and many are now in a rapidly deteriorating condition, threatening the nearby marine environment.

In addition to the environmental concerns posed by the deteriorating conditions of storage of these LRW, the former Soviet Union routinely dumped LRW and other radioactive waste in the Arctic Seas. Its successor, the Russian Federation, also has dumped LLRW at sea. Although the Russian Federation has refrained from such actions in recent years, it has not yet signed the 1993 amendments to the London Convention that bans the ocean dumping of all radioactive waste, including LLRW that was not covered under the original convention. This prototype demonstration project (Project 1.2)will be developed under the Arctic Military Environmental Cooperation (AMEC) Agreement, a trilateral agreement between Norway, Russia and the United States. The overall objective of this project is to design, develop, construct and demonstrate a unique prototype LRW processing system that is mobile, so that it can be transported to the remote sites where the storage tanks are located and can be operated at those locations. The first phase of the project, of concern here, will address those activities resulting in the successful design of the prototype LRW processing system.

The prototype system will consist of specially designed modules that can be assembled in particular configurations to address the special chemical and radioactive characteristics of the LRW stored in the individual tanks. Many of the individual modules will be based on new state- of-the-art demonstration technologies developed by Russia, Finland and/or the United States. The paper will discuss the characteristics and operating parameters of the proposed AMEC 1.2 unit in addition to a having review on current LLRW facilities operating in this region of Northwest Russia (e.g. ECO-3, Murmansk, MOS-Radon) and a tabular listing of available LLRW technologies available in the USA.

INTRODUCTION

AMEC 1.2 - A Modular Mobile Treatment Facility For Liquid Radioactive Waste

A number of sites have been identified in remote coastal locations in the Russian Northwest Arctic where complex liquid radioactive wastes (LRW) have been stored. These radioactive wastes are mostly stored in tanks under environmentally unsafe conditions within close proximity to the Arctic coast. The LRW are the result of nuclear submarine decommissioning activities related to arms reduction during the post-Cold War period. The conditions of storage and general circumstances of the remote coastal naval facilities prevent the off-loading from these storage tanks onto surface ships for transport to the fixed liquid radioactive waste processing facility at Murmansk, Russia (1,2,3). In addition, some of the radio-nuclides, the extremely high salinity content and specific organic contaminants present in some of the LRW are outside the capabilities of the existing low-level liquid radioactive waste (LLRW) processing facilities in Russia. Also, the tanks containing the LRW were not intended for long- term storage of such wastes, and many are now in a rapidly deteriorating condition, threatening the nearby marine environment.

In addition to the environmental concerns posed by the deteriorating conditions of storage of these LRW, the former Soviet Union routinely dumped LRW and other radioactive waste in the Arctic Seas. Its successor, the Russian Federation, also has dumped LLRW at sea. Although the Russian Federation has refrained from such actions in recent years, it has not yet signed the 1993 amendments to the London Convention that bans the ocean dumping of all radioactive waste, including LLRW that was not covered under the original convention. This prototype demonstration project (Project 1.2) will be developed under the Arctic Military Environmental Cooperation (AMEC) Agreement, a trilateral agreement between Norway, Russia and the United States. The overall objective of this project is to design, develop, construct and operate prototype LRW processing system that is both modular and mobile ,...The prototype system then can be transported to and operated at the remote sites where the storage tanks are located. The first phase of the project, of concern here, will address those activities resulting in the successful design of the prototype LRW processing system (4).

The prototype system will consist of specially designed modules that can be assembled in particular configurations to address the special chemical and radioactive characteristics of the LRW stored in the individual tanks. Anticipating the formal initiation of the design process, technical representatives of the AMEC participating countries began discussions of process and technologies concepts while at the May meeting, Figure 1. Many of the individual modules will be based on new state- of-the-art demonstration technologies developed by Russia, Finland and/or the United States. The system will be unique both in its selection of technologies from various countries and in it s ability to be configured specifically to process wastes of various characteristics.

Purpose of the facility

The mobile module facility will be used as a prototype for treatment of low level liquid radioactive waste in Northern Russia₅. These include wastes accumulated or generated from decommissioning of interim LRW/SNF storage facilities placed at shore or floating technical bases withdrawn from operation for the Russian Federation Navy and from dismantling nuclear submarines near the shore bases. As a prototype the facility will demonstrate the effectiveness of state of the art technologies.

Requirements for the facility

The design of the prototype facility will be based upon such criteria as:

- Capacity of facility $-1,000 \text{ m}^3/\text{y}$
- Volumes of LRW to be treated:
- Accumulated waste, about 6,400 m³
- Operating constraints imposed by the Arctic climate

- Support systems available at the various sites
- Characteristics and production rates of the various wastes

Characteristics of LRW to be treated with the mobile module facility (5):

1. Salt-free LRW	
Accumulated, about 1,	600 m ³
Expected generation. 2	$200-300 \text{ m}^3/\text{v}$
Salt content	up to 50mg/l
Volume activity	$3.7 \cdot 10^4 - 3.7 \cdot 10^5 \text{ Bg/l} [1 \cdot 10^{-6} - 1 \cdot 10^{-5} \text{ Ci/l}]$
Main radionuclides	137 Cs (60%), 90 Sr (20%), 60 Co (10%), others (10-%)
рН	9.5 - 10.5
Chlorides	up to 10 mg/l
Hydrazin-hydrate	20 mg/l
Ammonium	20 mg/l
2. Low-salted LRW	
Accumulated, about 2,	700 m^3
Expected generation, u	up to $100 \text{ m}^3/\text{v}$
Salt content	up to 1 g/l
Volume activity	$3.7 \cdot 10^4 - 3.7 \cdot 10^5$ Ba/l $[1 \cdot 10^{-6} - 1 \cdot 10^{-5}$ Ci/l]
Main radionuclides	137 Cs and 90 Sr at ratios from 2:1 to 1:2: 60 Co up to 1%
pH	6.8 - 7.4
Chlorides	up to 300 mg/l
Polyphosphates	up to 100 mg/l
Oxalates	up to 200 mg/l
Suspensions	up to 200 mg/l
3. Low-salted LRW Accumulated, about 50 Expected generation - condition of LRW hand	containing petroleum products 00 m ³ ? (should be specified annually as conditions of such LRW depend on technical dling means)
Salt content	up to 3 g/l
Volume activity	$3,7\cdot10^{4} - 3,7\cdot10^{3}$ Bq/1 [1·10 ³ - 1·10 ³ Ci/1]
Main radionuclides	137 Cs (60%), 90 Sr (30%); 60 Co (up to 10%),
pH	6,6 – 7,6
Chlorides	up to 2 g/l
Petroleum products	up to 2 g/l (at most 50-100 mg/l)
Detergents	50 mg/l
Suspensions	up to 500 mg/l
4. Trap water and de Accumulated, about 50 Expected generation, 2 Salt content Volume activity Main radionulclides pH Oxalates Chlorides Polyphosphates	contaminated water 00 m ³ 200-300 m ³ /y 3 - 5 g/l $3,7 \cdot 10^3 - 3,7 \cdot 10^4 Bq/l [1 \cdot 10^{-7} - 1 \cdot 10^{-6} Ci/l]$ $^{137}Cs (70\%), {}^{90}Sr(20\%), {}^{60}Co (10\%)$ 6,8 - 7,4 1 - 2 g/l 0,2 - 1 g/l 0,3 - 0,4 g/l
Nitrates	0,2 - 0,3 g/l
Petroleum products, oil	ls 20 - 100 mg/l

Detergents	100-200 mg/l
Suspensions	up to 100 mg/l
5. Salted LRW	
Accumulated, about 800	m^3
Expected generation, up	to $100 \text{ m}^3/\text{y}$
Salt content	5-15 g/l
Volume activity	$3.7 \cdot 10^{3}$ - $3.7 \cdot 10^{4}$ Bg/l [$1 \cdot 10^{-7}$ - $1 \cdot 10^{-6}$ Ci/l]
Main radionuclides	137 Cs (65-70%), 90 Sr (25-30%), 60 Co (up to 1%)
¹⁴⁴ Ce	(2-3%), ¹²⁵ Sb- traces
pH:	6.1-9.4
Chlorides	up to 10 mg/l
Oxalates	up to 1 g/l
Petroleum products, oils	up to 20 mg/l
Detergents	10-20 mg/l
Suspensions	0.5 - 1.0 g/l
6. High-salted LRW	
Accumulated, about 300	m^3
Expected generation, 500	m^3/v
Salt content	up to 33 g/l
Volume activity	$3.7 \cdot 10^3 - 3.7 \cdot 10^4$ Bg/l $[1 \cdot 10^{-7} - 1 \cdot 10^{-6}$ Ci/l]
Main radionuclides	35 S, 60 Co (up to 10%)
Oils	50-100 mg/l
Suspensions	up to 1 g/l

In addition to these waste characterizations the facility must address other requirements associated with good engineering practices. As a precursor to developing conceptual design solutions, the US AMEC team reviewed certain technologies used in US treatment practices. A common technology is the use of ion exchange employing resins selected based upon specific waste characterizations. Table 1 presents a summary of these ion exchange practices. This experience coupled with that of the Russians provides a wide choice for application in the mobile modular facility. Additional process units under consideration include electro-chemical oxidation, reverse osmosis, and electro-dialysis among others. The design philosophy for the facility with its requirements for mobility in standard size sea containers, modularity, and variable process configurations poses some unique design situations. Table 2 presents other requirements for safety, constructability, and operability of the facility.

A conceptual process configuration representing all required modular units, developed at the meeting in Saint Petersburg, is presented in Figure 2.

ECO-3 Mobile Liquid Radioactive Waste Treatment System

In May 2000, the AMEC 1.2 technical team traveled to the Svezdochka shipyard in Severodvinsk (6) to inspect the ECO-3 mobile liquid radioactive waste treatment unit, manufactured by Radon, Moscow (MOSRADON).

MOSRADON has 40 years experience in monitoring, processing, and disposal of radioactive wastes, including 15 years experience with mobile units and are specialists in mobile processing. Their systems have been installed on truck trailers and in sea containers.

The ECO-3 system was designed to treat low saline; low activity liquid wastes using sorption and membrane unit operations. Three similar Radon-designed systems have been operating at 16 different sites since 1970.

The Phoenix (cyanoferrate-type) sorbent is used for selective removal of cesium; a strong acid cation resin, similar to KA-11, is used to remove strontium.

The electro-dialysis/electro-osmosis module concentrates dissolved salts to 120-200 grams/liter. The concentrated salt solution is solidified.

The most common operating problems experienced are inconsistent waste stream composition and fouling of electro-dialysis membranes.

The three most limiting factors for ECO-3 are 1) composition of the radionuclides, 2) the maximum dose rate for the operators, and 3) the deposition rate of solids.

Compared with the ECO-3 system, Radon's mobile LRW treatment system in Moscow is more suitable for lower salinity waste. However, both systems can treat up to 3 grams/liter of dissolved salts. The ECO-3 system is more rugged and is both mobile and modular. The Moscow system is mobile, but not modular.

If necessary, the ECO-3 unit could be moved to a remote site to treat waste. However, it does not have its own power supply.

The ECO-3 unit power requirement is not more than 25 kw. The electro-dialysis unit is probably the greatest consumer at not more than 10 kw.

To treat higher salinity waste streams, Radon would add reverse osmosis; for dissolved organic compounds and detergents, they would use electro-chemical oxidation; and for suspended solids, they would include micro-filtration.

In 1996-1997, the unit was used to treat slightly more than 400 m³ (105,600 gallons) of liquid waste from an on-shore storage tank. This allowed the tank to be taken out of service so that the liquid waste storage facility (Building 159) could be upgraded. The waste was processed in 800 hours at roughly 0.5 m³ /hr (2.2 gpm) and yielded 2.5 m³ of solidified treatment residuals.

A total of 820 m³ (217,000 gallons) of liquid waste from the tanker Osetia was processed in two campaigns in 1999. This allowed the tanker to be emptied and sent to dry-dock for repair. In the first campaign, 500 m³ of liquid waste was processed in 1,000 hours to yield 5 m³ of solidified residuals. In the second, 320 m³ of waste was treated in 650 hours to yield 3 m³ of solidified residuals. The treated effluent from ECO-3 was discharged to an industrial sewer. Radon specialists supervised the system operation by Zvezdochka personnel.

The system is currently located inside a building and is no longer installed in a sea container. Most of the process equipment is installed on four modular skids. Though the ECO-3 system was not viewed assembled for operation at the time of the visit, the operating configuration as presented to the team is as shown in Figure 3. The piping on the skids is primarily stainless steel. The interconnecting piping between the skids is primarily flexible rubber hose. There are three piping interface connections between the shipyard and the treatment system: raw waste influent, treated waste effluent, and tap water supply.

Raw waste enters the system through two 16-micron cartridge filters for removal of suspended solids. The filtered wastewater then passes through two 30-liter sorbent columns containing Phoenix sorbent for selective removal of up to 98% of the cesium content. These sorbent columns are shielded with lead and are not installed on skids.

The effluent from the two 30-liter sorbent columns flows to four larger sorbent columns. These four columns are installed on two skids. The sorbents used in these columns depend on the waste composition, but would typically include a strong cation resin for strontium removal. The sorption column effluent passes through two more 16-micron cartridge filters, which serve as resin traps.

The filtered effluent from the sorption skids flows to an ultra-filtration skid for removal of fine suspended solids and colloids. This skid includes a small tank, feed pump, and four ultra-filtration membrane housings. Each UF filtration housing is about 4 inches in diameter and 5 feet long. The system operates at a pressure of around 4 atmospheres (60 psig).

The effluent from the ultra-filtration module flows to an electro-dialysis unit on the fourth and final skid. The electro-dialysis unit separates the stream into treated effluent suitable for discharge and a concentrated salt solution. The electro-dialysis unit includes 150 membrane couples and two anodes and cathodes. It requires a 250-volt power supply. The unit operates at 40°C and requires cooling. The treated effluent is discharged to an industrial sewer. The unit can discharge into rubber bladder tanks of 25 m³ each for holding until certified for discharge.

The salt solution from the electro-dialysis unit is further concentrated in an electro-osmosis unit installed on the same skid. This unit requires a 90-volt power supply and concentrates the salts to 200 grams/liter. The concentrated salt solution is solidified. The dilute effluent from the electro-osmosis unit can be recycled back to the inlet of the electro-dialysis unit.

Treatment residuals from the ECO-3 system would include spent sorbents, spent filter cartridges, sludge from ultra-filtration, and concentrated salt solution from electro-osmosis. These residuals would be solidified, probably with cement. However, no solidification equipment was evident during the tour.

"The Murmansk Initiative - RF"

"The Murmansk Initiative - RF" was conceived to address Russia's ability to meet the London Convention prohibiting ocean dumping of radioactive waste. The Initiative, under a trilateral agreement initiated in 1994, has upgraded an existing low-level liquid radioactive waste treatment facility, increased its capacity from 1,200 m 3 /year to 5,000 m 3 /year, and expanded the capability of the facility to treat liquids containing salt (up to 10 g/L). The three parties to the agreement, the Russian Federation, Norway, and the United States, have split the costs for the project. Russia conducted all construction activities at the facility. Construction is complete. Start-up testing has been completed both in manual phase and with automation controls in effect. These start-up activities have included processing of actual radioactive liquid waste from the Arctic icebreaker fleet, and incorporation of these wastes into a cementation process of Russian design. With the completion of these activities, the requirements of the tri-lateral agreement, known as the "Oslo Protocol" have been fulfilled. This paper will report on the results of the start-up testing activities in addition to the "acceptance testing" phase of the project. The acceptance testing requires the processing of 2000m3 of decommissioned submarine LLRW over a six-month time frame. This important phase of the project began on 01 October 2000. Progress of this phase of the project, including Russian licensing activities will be reported. Discussion will also report on any modifications to the proposed operational schedule for the facility. "Lessons Learned" will be evaluated and discussed, in addition to a discussion of potential follow-on activities for this unique region of the Russian Federation.

Zvezdochka/ Zvezda Facilities

Lockheed Martin Energy Technologies (LMET) was awarded a contract by the U.S. Defense Threat Reduction Agency in 1998 to design, develop, fabricate, test, a turn-key low-level radioactive waste (LLRW) volume reduction system at strategic submarine dismantlement facilities in the Russian Federation. The two sites chosen for this work were the Zvezdochka Shipyard in Severodvinsk and the Zvezda Shipyard in Bolshoi Kamen. These projects include construction of a building capable of storing 1500 m³ of processed waste at the Zvezda Shipyard. This project aids the Russian Federation in the volume reduction of LLRW generated from the dismantlement of strategic submarines under the Strategic Arms Reduction Treaties (START).

The project is intended to implement the following volume reductions 1) 4000 m³ per year of liquid/laundry LLRW and 200 m³ per year of SRW at the Zvezdochka Shipyard to less than 100 m³ per year and 2) 2500 m³ per year of laundry LLRW and 200 m³ per year of SRW at the Zvezda Shipyard to less than 50 m³ per year.

Four solution-types of liquid will be treated: Primary Loop Coolant, Biological Shielding Water, a mixture of organic-based decontamination solutions, and Radiological Laundry Wash/Rinse Water.

Renovation of the existing structures and the physical infrastructure at the Zvezdochka site was completed in February 2000. Process equipment installation at this site was completed in May 2000. Hydraulic and simulant cold testing were conducted between June and September, and hot testing will commence in early October 2000. It is anticipated that the Zvezdochka site will be ready to begin processing submarine dismantlement waste (i.e., hot tested and licensed by Russian certification authorities) by December 2000.

Activities at the Zvezda site have proceeded at a slower pace. Construction and renovation activities are continuing and are scheduled to be complete by September 2000. Installation of process equipment will be completed by December 2000 and hydraulic and simulant cold testing are scheduled to run from January to March 2001. It is anticipated that the Zvezda site will be fully operational by June 2001.

Summary/Conclusions

Based on Radon's presentation and the AMEC 1.2 technical team's inspection of the ECO-3 installation, the system appears to be suitable for treatment of up to 0.5 cu.M/hr of low salinity, low activity liquid waste. It is both mobile and modular and should be suitable for treatment of wastes in remote locations.

The system is not suitable for treatment of wastes with elevated levels of dissolved solids (salt), suspended solids, oil, and dissolved organic compounds and detergents. Additional unit operations which would permit treatment of the six AMEC 1.2 waste streams defined by Nuclide might include: cross-flow membrane filtration to remove suspended solids and oil, oxidation/adsorption of dissolved organics/detergents, and reverse osmosis to remove dissolved solids.

The ECO-3 system, as currently installed in Zvezdochka, is not a stand-alone system. Supporting equipment and systems which would be required for remote operation would include: a power supply, analytical/monitoring equipment, solidification equipment, treated effluent storage capacity, decontamination equipment, etc.

In the opinion of the technical team, it is not be cost effective to modify the ECO-3 system to treat the six AMEC 1.2 waste streams in remote locations, although elements of the system, or of the design, could be incorporated into an AMEC 1.2 system. The AMEC 1.2 project team is currently planning to procure the necessary components and expertise to re-design (taking into account lessons learned from ECO-3, Zvezdochka/ Zvezda Facilities) and construct a new mobile modular facility to treat low level liquid radioactive waste in northwestern Russia.

Table I. Review of U.S. Ion Exchange Treatment Practices for Liquid Radioactive Waste Streams					
Location/Sour ce of Feed	Ion Exchange Resin	Resin Characteristic	Contaminants of Concern	Decontaminati on	Status/Remark s
Stream		s		Factor	
Hanford/	^a KCOHex,	Inorganic	Cs-137	1.001E+01	From PNNL
N-Reactor unmilled Storage ^a KCOHex,	unmilled	material produced by	Sr-90	1.090E+00	Study "Performance
	^a KCOHex,		Cs-137	1.121E+01	
Basin water	milled	3M on an experimental basis.	Sr-90	1.099E+00	Evaluation of 24 Ion Exchange
			Cs-137	3.599E+00	Materials for

Pharma-		Sr-90	4.433E+00	Removing
cosiderite				Cesium and
Pharma-		Cs-137	4.677E+00	Strontium from
cosiderite		Sr-90	2.376E+00	Actual and Simulated N
Pharma-		Cs-137	2.507E+00	Reactor
cosiderite		Sr-90	1.708E+00	Storage Basin
Phlogopite	Chemically	Cs-137	6.192E+00	Water".
(90% Na)	and thermally	Sr-90	1.130E+00	(PNNL-11711).
Biotite (60%	stable layered	Cs-137	3.296E+00	
Na)	aiuminosilicat	Sr-90	1.135E+00	
	e micas modified from	~	1.0075.01	
Modified	natural form.	<u>Cs-137</u>	1.097E+01	
Biotite	Highly	Sr-90	1.169E+00	
Diotite	selective for	Cs-137	8738E+00	-
Modified	removing	Sr-90	1.139E+00	-
Biotite	cesium and	51-70	1110/2100	
	strontium	Cs-137	8.194E+00	
Modified	Irom various	Sr-90	1.141E+00	
Biotite	matrices			
M - 11C - 1	mati ices.	Cs-137	6.234E+00	-
Riotito		Sr-90	1.053E+00	
Dioute		C. 127	3.642E±00	
IONSIV®		CS-137	1 305E+00	
IE-96		51-90	1.5051700	
	Synthetic high-	Cs-137	2.748E+00	
IONSIV®	capacity			
TIE-96	aluminosilicate	Sr-90	1.296E+00	
	zeolite with			
	relatively little			
	selectivity for			
	cesium over			
	metals			
	metais.			

^aPotassium cobalt hexacyanoferrate.

Location/Sour ce of Feed	Ion Exchange Resin	Resin Characteristic	Contaminants of Concern	Decontaminati on Factor	Status/Remar ks
Stream		S			
Hanford/		Modified	Cs-137	9.965E+00	From PNNL
N-Reactor	IONSIV®	version of IE-			Study
Storage	IE-910	96 capable of	Sr-90	3.283E+00	"Performance
Basin Water		removing			Evaluation of
		strontium,			24 Ion
		plutonium, and			Exchange
		cesium from			Materials for
		alkali solutions.			Removing
	IONSIV®	Powdered	Cs-137	3.336E+00	Cesium and
	IE-911	crystalline	Sr-90	2.103E+00	Strontium from
		silicotitanate.	~~ / ~		Actual and
	IONSIV®	Crystalline	Cs-137	2.541E+00	Simulated N-
	IE-911	silicotitanate in	Sr-90	1.674E+00	Reactor
	IONSIV®	engineered	Cs-137	5.046E+00	Storage Basin

IE-911	bead or pellet	Sr-90	2.390E+00	Water",
	form.			(PNNL-11711).
SuperLig® 644	Chemically and	Cs-137	1.401E+00	
	radiochemicall			
	y stable			
	polymer resin;	Sr-90	1.015E+00	
	highly selective	51 70		
	for cesium			
	even in the			
	presence of			
	excess sodium			
	and potassium.			
Duolite C-467	Organic cation	Cs-137	1.039E+00	
	exchangers	Sr-90	1.057E+00	
Amberlite IRC-	containing	Cs-137	1.043E+00	•
76	aminophospho	Sr-90	1.362E+00	
	nic acid groups	51 70		
Amberlite IRC-	on a polymer	Cs-137	9.847E+00	
718	backbone.	Sr-90	1.084E+00	
	Expected to			
	have a greater			
	affinity for			
	strontium than			
	cesium under			
	most			
D 11 00 100	conditions.			
Duolite CS-100	Commercially	Cs-137	NA	
	available	Sr-90	NA	
Resorcinol-	organic ion	Cs-137	1.523E+00	
formaldehyde	exchange			
	resins. CS-100		1.1.60 0.00	
	is a granular	Sr-90	1.162E+00	
	phenol-			
	formaldenyde			
	condensate			
	polymer resin.			
	R-F exhibits a			
	much greater			
	selectivity for			
	cesium and			
	sublinum over			
	socium and			
	potassium than			
1	CS-100.			1

Location/Sour ce of Feed Stream	Ion Exchange Resin	Resin Characteristics	Contaminant s of Concern	Decontaminati on Factor	Status/Remar ks
Hanford/	Amberlite CG-120	Strong nonselective acid	Cs-137	1.047E+00	From PNNL Study

Contract COT 120 Inductor reaction Sp-90 1-419L-00 Water Basin Water and RC 718 - should not pick up strontium or cesium. should not pick up strontium or cesium. Sp-90 1-419L-00 Waterials for Removing Clinoptilotite Relatively incepensive natural zcolite capable of removing strontium and, to a lesser degree, cesium from low Cs-137 1.823E+00 Strontium from Actual and Strontium from Act	N-Reactor	CG_{-120}	nonselective acid	C., 00	1⊿10E₊∩∩	Study
Basin Water Similar to IRC-76 and IRC 718 - should not pick up strontium or cesium. Strontium or cesium. Evaluation of 24 ton Evchange Materials for Removing Clinoptilotite Relatively nexpensive natural zcolite capable of removing Cs-137 1.823E+00 Evaluation of Strontium and tontium from low solum solutions. Oak Ridge – Melton Valley/ W-25 SRR See above. Cs-137 1.196E+00 Storage Tank W-25 Rescorcinol – formaldehyde See above. Cs-137 From ORNL Suday Duolite CS-100 See above. Cs-137 Cs-137 Steatangers from low solum solutions. V-25 Duolite CS-100 See above. Cs-137 Cs-137 Duolite CS-100 See above. Cs-137 Cs-137 Torystalline silicoittanate Powdered in batch processes. Not suitable for use in incrospheres column-sechange column-sechange Cs-137 MVXT W-25 Supernate* KCOHex, granular HTiO microspheres strontium from alkaline solutions of high salt Cs-137 MVXT W-25 Supernate*	Storage	0.0-120	cation exchanger	51-90	1.417170	"Performance
Definit relation and IRC 718 - should not pick up strontium or cesium. 24 Ion Exchange Materials for Removing Clinoptiloitie Relatively inspensive natural zcolite capable of removing strontium and, to a lesser degree, cesium from low sodium solutions. Cs-137 1.823E+00 Oak Ridge - Melton Valley/ Storage Tank W-25 supernate SRR Rescorcinol - formaldehyde silicotitanate SR Specific type of R-F developed at Specific type of R-F developed at Specific type of R-F developed at Site. Cs-137 From ORNL Study Duolite CS-100 See above. Cs-137 From ORNL Study Study "Evaluation Selected Ion Exchangers for the Removalo Selected Ion Exchangers for the Removalo Supernate" From ORNL Study Melton Valley/ Storage Tank W-25 s Duolite CS-100 See above. Cs-137 Study "Evaluation of Selected Ion Exchangers for the Removalo Cs-137 Duolite CS-100 See above. Cs-137 Cs-137 MVST W-25 Supernate" (ORNL/TM- 12938). KCoHex, granular HTiO microspheres enbedded with KCoHex powder by internal gelation process. Prepared in column-uscable form; effectively removes strontium from alkaline solutions of high satt content. Cs-137 Selecter Study	Basin Water		similar to IRC-76			Evaluation of
All and product of the should not pick up strontium or cesium. Exchange Materials for Removing Cs-137 Exchange Material and Strontium and to a lesser degree, cestum from low sodium solutions. Storage Basin Water'', (PNNL-117) Oak Ridge - Method Valley/ SRR See above. Cs-137 From ORNL Storage Tank Ster for Use in iongranic ion exchanges for use in ion-exchange column. Powdered inorganic ion exchange column. Exchanges fit water'', (ORNL/TM-12938). KCoHex, granular HTiO microspheres exchange ror use in ion-exchange column. Cs-137 WVST W-25 KCoHex, granular HTiO microspheres exchange ror use in ion-exchange column. Cs-137 Ide Removal Cs-137 KCoHex, granular HTiO microspheres exchange ror use in ion-exchange column. Cs-137 Ide Removal Cs-137 KCoHex, granular HTiO microspheres exchange ror use in ion-exchange column. Ide Removal Cs-137 Ide Removal Cs-137 KCoHex, granular HTiO microspheres exchange ror use in ion-exchange column. Ide Removal Cs-137 Ide Removal Cs-137 KCoHex, granular See abo	Dusin Water		and IRC 718 $-$			24 Ion
Initial of pick up strontium or cesium. Destinating (Clinoptilotite inexpensive natural zeolite capable of removing strontium and, to a lesser degree, cesium from low softium solutions. Cs-137 I.823E+00 Materials Removing Strontium for Actual and Storage Basin Water [*] , (PNNL-1171 Oak Ridge – Melton Valley/ Storage Tank w-25 SRR Rescorcinol – formaldehyde SRR Rescorcinol – Specific type of R-F developed at Savannah River Cs-137 From ORNL Study "Evaluation of Selected Ion Selected Ion Selected Ion Selected Ion Selected Ion Selected Ion Subathe formaldehyde Duolite CS-100 See above. Cs-137 Cesium from VXST W-25 Supernate [*] Duolite CS-100 See above. Cs-137 Cesium from VXST W-25 Supernate [*] KCoHex, granular See above. Cs-137 Cesium from VXST W-25 Supernate ^{**} KCoHex, granular See above. Cs-137 Cesium from VXST W-25 Supernate ^{**} KCoHex, granular See above. Cs-137 Cs-137 Hydrous titumium oxide/KCoHex composite HTiO microspheres extrontium from alkaline solutions of high salt content. Cs-137 Titanium monohydroeen See composite form; effectively removes Cs-137 Image all the solutions of high salt content.			should not nick			Exchange
cesium. Relatively Cs-137 1.823E+00 Cesium and Strontium for Actual and Strontium for Attach Strontium for Actual and Strontium			should not pick			Exchange Motorials for
ClinopilotiteCestum. leadavely inexpensive natural zeolite capable of removing strontium and, to a lesser degree, cesium from low sodium solutions.CS-1371.823E+00Removing Strontum from Actual and Simulated N Reactor Storage Basin Water", (PNNL-1171Oak Ridge - Melton Valley/ Storage Tank W-25 supernateSRR Rescorcinol - formaldehydeSRR See above.CS-137From ORNL Study "Evaluation of Storage Basin Water", (PNNL-1171Oak Ridge - Melton Valley/ Storage Tank W-25 supernateSRR Rescorcinol - formaldehydeSee above. Sec above.CS-137From ORNL Study "Evaluation of See above.Duolite CS-100 supernateSee above. Powdered inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns.CS-137From ORNL Study "Evaluation of Selected Ion CS-137KCoHex, granularSee above. Progravel in columns.CS-137CS-137Hydrous titanium oxide/KCOHex compositeTrion microspheres ention process.CS-137Hydrous titanium oxide/KCOHex compositeHTiO microspheres ention process.CS-137Titanium monohydrogenSee composite form effectively removes strontium from alkaline solutions of high salt content.CS-137Titanium monohydrogenSee composite compositeCS-137			up strontium or			Materials for
ClimophiomeRelatively recxpensive natural zeolite capable of removing strontium from a lesser degree, cessium from low sodium solutions.Cs-1371.825E-00Cesum and Actual and Simulated N- Recator Storage Basin Water*, (PNNL-1171)Oak Ridge - Metton Valley/ Rescorcinol - formaldehydeSRR See above.See above.Cs-137From ORNL Storage Tank Water*, (PNNL-1171)Oak Ridge - Metton Valley/ Storage Tank W-25 supernateSRR formaldehydeSee above.Cs-137From ORNL StudyDuolite CS-100See above.Cs-137Cs-137Cesium from NorestiteDuolite CS-100See above.Cs-137Cesium from WYST W-25 Supernate*From ORNL StudySite.Duolite CS-100See above.Cs-137Cesium from WYST W-25 Supernate*'Duolite CS-100See above.Cs-137Cesium from VWST W-25 Supernate*'March processes. Not suitable for use in ion-exchange columns.Cs-137Cs-137Hydrous titanium oxide/KCOHex compositeHTiO Witernal gelation process. Prepared in column-useable form, effectively removes strontium from alkalne solutionsCs-137See 137Titanium monohydrogenSee compositeCs-137Cs-137Titanium monohydrogenSee compositeCs-137Titanium monohydrogenSee compositeCs-137Titanium monohydrogenSee compositeCs-137Titanium monohydrogenSee compositeCs-137Titan			cesium.		1.00000.00	Removing
Image: Second		Clinoptilotite	Relatively	Cs-137	1.823E+00	Cesium and
Imatural zeohte capable of removing strontium and, to a lesser degree, cesium from low sodium solutions.Sr-901.196E+00Actual and Simulated N- Reactor Storage Basin Water", (PNNL-1171Oak Ridge - Metron Valley/ Storage Tank W-25 supernateSRR formaldehydeSee above. Specific type of R-F developed at Savannah River Site.Cs-137From ORNL Study "Evaluation of See above.From ORNL Study "Evaluation of See above.Duolite CS-100 slicotitanateSee above.Cs-137From ORNL Study "Evaluation of See above.Duolite CS-100 slicotitanateSee above.Cs-137MVST W-25 Supernate" (ORNL/TM- 12938).KCOHex, granularPowdered inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns.Cs-137MVST W-25 Supernate" (ORNL/TM- 12938).KCOHex, granularSee above.Cs-137Image above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres gelation process. Prepared in column-uscable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Actual and multable solutions of high salt content.Titanium monohydrogenSee compositeCs-137Image above.Sc-137			inexpensive			Strontium from
Capable of removing strontium and, to a lesser degree, cesium from low sodium solutions.Smullated N Reactor Storage Basin Water*, (PNNL-1171)Oak Ridge - Melton Valley/ Storage Tank W-25SRR Rescorcinol - Specific type of See above.Cs-137From ORNL StudyOutine CS-100Sce above. Specific type of Savannah River Site.Cs-137From ORNL StudyDuolite CS-100Sce above. See above.Cs-137Cesium from W25Duolite CS-100Sce above. Ste above.Cs-137Cesium from W7ST W-25Duolite CS-100Sce above. Site.Cs-137Cesium from WST W-25Duolite CS-100Sce above. Site.Cs-137Cesium from WST W-25Duolite CS-100Sce above. suitable for use in ion-exchanger columns.Cs-137Cesium from WST W-25KCOHex, granularSee above. embedded with KCoHex compositeCs-137Cesium from WST W-25Hydrous titanium oxide/KCoHex compositeHTiO microspheres strontium from alkaline solutionsCs-137Titanium monohydrogenFrom embedded with kCoHex powder by internal gelation process. Prepared in column-uscable form; effectively removes strontium from alkaline solutionsCs-137Titanium monohydrogenSee composite content.Cs-137			natural zeolite	Sr-90	1.196E+00	Actual and
Markan Sector Reactor Storage Basin Water", Oak Ridge - Melton Valley/ Storage Tank SRR See above. Cs-137 From ORNL W-25 Storage Tank Ster degree, cesium from low Cs-137 From ORNL Supernate Duolite CS-100 See above. Cs-137 Study Duolite CS-100 See above. Cs-137 Cseudation of Selected Ion Site Duolite CS-100 See above. Cs-137 Ceshanger for Unolite Cs-100 Streage for use in batch Powdered Cs-137 Ceshanger for Unolite Cs-100 Cs-137 KCoHex, granular See above. Cs-137 Csenager for Unolite Cs-100 See above. KCoHex, granular See above. Cs-137 Csenager for Unonexchange columns. Csenager for use in batch Csenager for use in batch Csenager for use in batch W-25 Supernate" See above. Cs-137 Csenager for use in batch Csenager for use in batch Csenager for use in batch Csenager for use in batch W-25 Supernate" See above. Cs-137 Csenager for Unonexchange columns. Csenager for Unonexchange Csenager for Unonexchange See above. Csenager for Unonexchange Csenager for Unonexchange Csenager for Unonexchange Csenager for Unonexiter			capable of			Simulated N-
Storage Basin a lesser degree, cesium from low sodium solutions.Storage Basin Water", (PNNL-1171Oak Ridge - Melton Valley/ Rescorcinol - Storage Tank W-25 supernateSRR Rescorcinol - Specific type of Site.See above. Specific type of R-F developed at Savannah River Site.Cs-137 Exchangers for the Removal of Cs-137From ORNL StudyDuolite CS-100 SupernateSee above. Sec above.Cs-137 Cs-137Exchangers for the Removal of Cs-137Duolite CS-100 silicotitanateSee above. Sec above.Cs-137 inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns.Cs-137 (ORNL/TM- 12938).KCoHex, granularSee above. microspheres embedded with KCOHex compositeCs-137 microspheres embedded with KCOHex powder by internal gelation process. Prepared in column-useable form, effectively removes strontium from alkaline solutions of high sat content.Cs-137 Cs-137Titanium monohydrogenSee compositeCs-137 microspheres enbedded with column-useable form, effectively removes strontium from alkaline solutions of high sat content.Cs-137 cs-137			removing			Reactor
a lesser degree, cesium from low sodium solutions. Water', (PNNL-1171 Oak Ridge - Meton Valley/ Storage Tank W-25 SRR Rescorcinol - formaldehyde See above. See above. Cs-137 From ORNL Study "Evaluation of Selected Ion Selected Ion Selected Ion Exchangers for use in batch processes. Not suitable for use in ion-exchange columns. Powdered in batch processes. Not suitable for use in ion-exchange columns. Cs-137 KCNLTM. (ORNL/TM. 12938). KCOHex, granular See above. Cs-137 Cesium from MVST W-25 Supernate" Hydrous HTiO microspheres embedded with KCOHex powder by internal gelation process. Prepared in column-useable form, effectively removes strontium from alkaline solutions of high salt content. Sec 137			strontium and, to			Storage Basin
Oak Ridge – Melton Valley/ Storage Tank SRR Rescorcinol – formaldehyde See above. Cs-137 From ORNL Study W-25 mail and the second of the secon			a lesser degree,			Water",
Oak Ridge – Melton Valley/ Storage Tank W-25 SRR escorcinol – formaldehyde See above. Specific type of Savannah River Site. Cs-137 From ORNL Study "Evaluation of Selected Ion Exchangers fot in See above. Duolite CS-100 See above. Cs-137 the Removal of Cs-137 Crystalline silicotitanate Powdered inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns. Cs-137 ORNL/TM- 12938). KCoHex, granular See above. Cs-137 Cs-137 Hydrous titanium oxide/KCoHex composite HTiO microspheres embedded with KCOHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontum from alkaline solutions of high salt content. Cs-137			cesium from low			(PNNL-117/11).
Oak Ridge Melton Valley/ Storage Tank SRR Rescorcinol - formaldehyde See above. Specific type of R-F developed at Savannah River Site. Cs-137 From ORNL Study supernate Duolite CS-100 See above. Cs-137 Exchangers fo the Removal of Cs-137 Duolite CS-100 See above. Cs-137 Exchangers fo the Removal of Cs-137 Exchangers fo the Removal of Cs-137 Duolite CS-100 See above. Cs-137 MVST W-25 Supernate" ORNL/TM- 12938). Korthex, granular Powdered in batch processes. Not suitable for use in ion-exchange columns. Cs-137 Image: Cs-137 Hydrous titanium oxide/KCoHex composite HTiO microspheres embedded with KCOHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content. Cs-137 Titanium monohydrogen See composite Cs-137			sodium solutions.			
Melton Valley/ Storage Tank Rescorcinol – formaldehyde Specific type of R-F developed at Savannah River Study supernate Duolite CS-100 See above. Cs-137 Exchangers for the Removal of Crystalline Duolite CS-100 See above. Cs-137 Cesium from MVST W-25 Silicotitanate Powdered in organic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns. Cs-137 KCoHex, granular See above. Cs-137 Hydrous titanium MTiO Cs-137 oxide/KCoHex composite See above. Cs-137 Vittanium microspheres oxide/KCoHex composite See above. Prepared in column-uscable form; effectively removes strontium from alkaline solutions of high salt content. Cs-137 Titanium See composite content. Cs-137	Oak Ridge –	SRR	See above.	Cs-137		From ORNL
Storage Tank W-25 supernate formaldehyde R-F developed at Savannah River Site. "Evaluation of Selected Ion Exchangers for inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns. "Evaluation of Selected Ion Exchangers for exchanger for use in batch processes. Not suitable for use in ion-exchange columns. "Evaluation of Selected Ion Exchangers for exchanger for use in batch processes. Not KCoHex, granular See above. Cs-137 "Evaluation of Selected Ion MVST W-25 Supernate" (ORNL/TM- 12938). KCoHex, granular HTiO Cs-137 "Evaluation of Selected Ion origen of thigh salt content. Titanium See composite Cs-137 "Evaluation of Selected Ion Selected Ion origen of thigh salt content.	Melton Valley/	Rescorcinol –	Specific type of			Study
W-25 supernate Savannah River Site. Selected Ion Exchangers for the Removal of the Removal of the Removal of the Removal of t	Storage Tank	formaldehyde	R-F developed at			"Evaluation of
supernateSite.Exchangers for the Removal of the Removal of Cs-137Duolite CS-100See above.Cs-137Crystalline silicotitanatePowdered inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns.Cs-137KCoHex, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex, powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Titanium monohydrogenSee compositeCs-137	W-25		Savannah River			Selected Ion
Duolite CS-100See above.Cs-137the Removal of Cesium from MVST W-25 Supernate" (ORNL/TM-12938).Crystalline silicotitanatePowdered inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns.Cs-137MVST W-25 Supernate" (ORNL/TM-12938).KCoHex, granularSee above.Cs-13712938).Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-uscable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137	supernate		Site.			Exchangers for
Crystalline silicotitanatePowdered inorganic ion exchanger for use in batch processes. Not suitable for use in ion-exchange columns.Cs-137Cesium from MVST W-25 Supernate" (ORNL/TM- 12938).KCoHex, granularSee above.Cs-13712938).Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137	supernate	Duolite CS-100	See above.	Cs-137		the Removal of
SilicotitanateIoriganicion exchanger for use in batch processes. Not suitable for use in ion-exchange columns.MVST W-25 Supernate" (ORNL/TM- 12938).KCoHex, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Titanium See compositeTitanium monohydrogenSee compositeCs-137		Crystalline	Powdered	Cs-137		Cesium from
SubstantialIntegrationSupernate" (ORNL/TM- 12938).Supernateexchange for use in batch processes. Not suitable for use in ion-exchange columns.Supernate" (ORNL/TM- 12938).KCoHex, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137		silicotitanate	inorganic ion	00 107		MVST W-25
Image for and the in batch in batch processes. Not suitable for use in ion-exchange columns. (ORNL/TM-12938). KCoHex, granular See above. Cs-137 Hydrous titanium oxide/KCoHex composite HTiO Cs-137 (ORNL/TM-12938). KCoHex, granular HTiO Cs-137 (ORNL/TM-12938). Hydrous titanium oxide/KCoHex composite HTiO Cs-137 (ORNL/TM-12938). Oxide/KCoHex composite HTiO Cs-137 (ORNL/TM-12938). Itanium oxide/KCoHex composite Itanium oxide/KCoHex composite (ORNL/TM-12938). Itanium oxide/KCoHex composite Itanium oxide/KCoHex composite (Se-137) Itanium oxide/KCoHex composite Cs-137 (Itanium composite) Itanium monobydrogen See composite Cs-137 Itanium monobydrogen See composite Cs-137		Shireothanate	exchanger for use			Supernate"
In outer processes. Not suitable for use in ion-exchange columns. 12938). KCoHex, granular See above. Cs-137 Hydrous titanium oxide/KCoHex composite HTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content. Imitianium cost of the sector of the sector of the sector of the sector KCoHex powder Titanium See composite Cs-137			in hatch			(ORNL/TM-
KCoHex, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137			processes Not			12938).
KCoHex, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137			suitable for use in			,
KCoHex, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137			ion exchange			
KCoHex, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137			columns			
KCOHEX, granularSee above.Cs-137Hydrous titanium oxide/KCoHex compositeHTiO microspheres embedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137		VC-U	Concentration of the second se	C- 127		
granuarHTiOCs-137Hydrous titanium oxide/KCoHex compositeembedded with KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.Cs-137Titanium monohydrogenSee compositeCs-137		KCOHex,	See above.	CS-13/		
Hydrous titaniumHTO microspheresCs-137oxide/KCoHex compositeembedded with KCoHex powder by internal gelation process.Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content.TitaniumSee compositeCs-137		granular		~		-
titaniummicrospheresoxide/KCoHexembedded withcompositeKCoHex powderby internalgelation process.Prepared incolumn-useableform; effectivelyremovesstrontium fromalkaline solutionsof high saltcontent.TitaniumSee compositeCs-137		Hydrous	HTiO	Cs-137		
oxide/KCoHexembedded withcompositeKCoHex powderby internalgelation process.Prepared incolumn-useableform; effectivelyremovesstrontium fromalkaline solutionsof high saltcontent.TitaniumSee compositeCs-137		titanium	microspheres			
composite KCoHex powder by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content. Titanium monohydrogen See composite characteristics Cs-137		oxide/KCoHex	embedded with			
by internal gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content. Titanium See composite characteristics Cs-137		composite	KCoHex powder			
gelation process. Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content. Titanium See composite Cs-137 monohydrogen characteristics			by internal			
Prepared in column-useable form; effectively removes strontium from alkaline solutions of high salt content. Titanium See composite Cs-137 monohydrogen characteristics			gelation process.			
column-useable form; effectively removes strontium from alkaline solutions of high salt content. Titanium See composite Cs-137 monohydrogen characteristics			Prepared in			
form; effectively removes strontium from alkaline solutions of high salt content. Titanium See composite Cs-137 monohydrogen characteristics			column-useable			
removes strontium from alkaline solutions of high salt content. Titanium monohydrogen characteristics Cs-137			form; effectively			
strontium from alkaline solutions of high salt content.			removes			
alkaline solutions of high salt content. alkaline solutions of high salt content. Titanium monohydrogen See composite characteristics Cs-137			strontium from			
of high salt content.			alkaline solutions			
content.TitaniumSee compositeCs-137monohydrogencharacteristics			of high salt			
TitaniumSee compositeCs-137monohydrogencharacteristics			content.			
monohydrogen characteristics		Titanium	See composite	Cs-137		
		monohydrogen	characteristics	·		
phosphate/NaC above.		phosphate/NaC	above.			
oHex		oHex				
Composite		Composite				
Oak Ridge – Crystalline See above. Cs-137 Unknown Engineering-	Oak Ridge –	Crystalline	See above.	Cs-137	Unknown	Engineering-
	Melton Vallev/	silicotitanate		22 201		scale
1 T 1 T 11 / all actionate	Melton Valley/	silicotitanate				scale

Storage Tank			demonstration
W-29			processed
			31,000 gals.
			Demonstration
			began in '96
			and produced
			70 gals. of
			spent sorbent.
			High-pH, high-
			salt feed. Flows
			up to 9 bed-
			volumes/hr.
			Design basis
			concentration
			of 4.0-4.9 x 10 ⁻
			⁵ Bq/ml.

Location/Source of Feed Stream	Ion Exchange Resin	Resin Characteristi cs	Contaminants of Concern	Decontaminati on Factor	Status/Remarks
West Valley/ HLW Tank supernate	Zeolite	Not specified.	Cs-137	Unknown	Spent sorbent is vitrified. Sorbent must be ground (for size reduction) prior to vitrification. Zeolite fines management and handling a major challenge during column change-out. Significant operational and material handling modifications were required to account for heat of hydration during sorbent preparation and column change-out.
Hanford/ Tank 101-AW	Resorcinol- formaldehyde Crystalline silicotitanate	See above.	Unknown	Unknown	Laboratory-scale tests using 8- millimeter column at 6 column-vols./hour. Initial and 50% breakthrough for crystalline silicotitanate were 330 and 660 column volumes; the 50% breakthrough for resorcinol- formaldehyde was 13.5 volumes.

Table II. Proto	type LRW Facility Design Considerations
Requirement Addressed	Comments and Potential Solutions
Suitability of the overall process concept, and of the specific unit operations selected, for treatment of the waste stream compositions identified.	 A conceptual overall process configuration, as discussed in May, 2000, for treatment of the six waste streams would include the following. primary purification; course mechanical pre-filtration followed by filtration with a centrifugal ceramic cross-flow membrane filter – a device designed specifically for high suspended solids and oil loadings without fouling and tested extensively at Los Alamos. selective sorption filters; ion exchange columns for removing the bulk of the radioactive components – essentially cesium and strontium destructor of organic admixtures; partial (electro-chemical) oxidation of organics and detergents followed by coagulation and a second filtration reverse osmosis (RO); a concentration of the remaining dissolved solids, especially radionuclides final purification; ion exchange polishing of the clean water before transferring to the holding tank for analytical verification of quality solidification; cementation by mixing with cement in 200 L metal drums No details of the design have been developed beyond the conceptual stage. The technology of each of the units is stated to have been proven in Russian experience. Most, if not all, have had some development in the United States. The primary purification unit may also include activated carbon – following electro-chemical oxidation should it be included- for final protection of the ion exchange resin – a common and probably required process step in this situation.
Cost and schedule factors	A definitve cost estimate and schedule cannot be made until the final design basis is agreed upon. A preliminary schedule and cost estimate is needed in order to ferrite out any significant impacts attributable to a specific technology. Definitive confirmation of the estimates can then be made before authorizing mechanical design and construction
Adequacy of design criteria and scope definition	The design criteria must address site interface questions and product disposition in addition to the prototype facility itself.
Adequacy of plans for treatability testing	Extensive characterization of the waste streams has been done or plans are in place. No other treatability tests for these specific wastes have been presented and apparently none are intended. (Treatability tests on actual radioactive waste can be very difficult and expensive.) They, the Russians, apparently will rely on

Table II Prototype LRW Facility Design Consideration

	experience with other similar materials.
Logistical requirements	Logistical requirements have to be addressed specific to the
	various sites though they have been discussed in general with
	regard to the need to provide support for laboratory work, need to
	supply fuel, and quick access to maintenance supplies not in the on
	site inventory. Also, available operation consultation support must
	be addressed.
Definition of system interface	The facility is to be designed as a stand-alone facility with
requirements with existing facilities	capability to interface with on site utilities where they are
	available.
Requirement Addressed	Comments and Potential Solutions
Adequacy of plans for stabilizing and/or	Process residuals will be solidified by cementation. Site and waste
disposal of treatment process residuals	specific cement formulation criteria must be addressed.
Process flexibility including capability to	Process flexibility is being addressed through the selection of
reprocess effluent that does not satisfy	various process units. Off spec product recycling is addressed in
discharge requirements	the Technical Requirements document.
Provisions for the effluent monitoring	Effluent monitoring is more of an operating plan and procedure
and laboratory support	problem than a facility design and construct question. Except, of
	course, adequate provisions for sampling is required in the design
	and proper test equipment must be provided for.
System mobility	System mobility has been stressed throughout the technical
	meetings and in the Technical Requirements. All units and
	support equipment is to be contained in up to four (4) twenty foot
	sea containers,
Operational efficiency	Operational efficiency is addressed in the Technical Requirements.
1 5	The requirements for minimum downtime for maintenance as a
	factor in limiting personnel exposure also serve to insure a high
	level of operational efficiency.
Ability to perform planned maintenance	Provision for the ability to perform maintenance at remote sites is
at remote sites	provided in the Technical Requirements. Ability to do this will
	depend upon availability of trained maintenance personnel.
Capability and limitations for winter	The facility will not be capable of operation in below freezing
operations at remote sites	conditions but will be designed for freeze protection to -50
•	degrees C when not operating. The facility may be moved indoors
	for winter operation if the site facilities permit.
Constructability	A design issue that should be addressed early in the design
	process. Inasmuch as the facility is composed primarily of
	manufactured items, constructability should not be a serious issue
	but does require the different unit suppliers communicate with
	each other on this subject.
Potential for accidental uncontrolled	Prevention of uncontrolled releases will be a concern of the
environmental releases	facility operating procedures and operator training. The design
	team must address this concern with the operating organization.
Operator safety	Operator safety is addressed through the Technical Requirements
	provisions for limited need of access by maintenance and
	operation personnel. Also, the order of units is being designed to
	the extent possible to remove the bulk of the radionuclides early in
	the process to minimize the hazard in the following process areas.
On-stream factor(what percent of the	The design on stream factor is only about 11 percent. This takes
time it will be operating)	into account the limited available time because of weather
	considerations and the need for transfer time between sites. If the
	facility is designed, operated and maintained in accordance with
	Technical Requirements, the design on-stream factor is
	conservative.
1	

Fig. 1. Jim Findley, USA AMEC Engineer Leads PFD Development In St. Petersburg

Fig. 2. The ECO – 3 Unit Was Presented At Svezdochka With This PFD Configuration

Fig. 3. The Conceptual Flow Diagram Includes Units For Treating All Presented Liquid Rad Waste Streams

REFERENCES

- 1 Belikov, Co. A.D., "The Radiation and Ecological Situation at Northern Fleet Facilities", Proceedings from the NATO Advanced Research Workshop "Recycling, Remediation, and Restoration Strategies for Contaminated Civilian and Military Sites in the Arctic Far North", Kirkenes, Norway, 24-28 June 1996.
- 2 Khitrov, Y.A., "Options for Storing and Processing Radioactive Wastes", Proceedings from the NATO Advanced Research Workshop "Recycling, Remediation, and Restoration Strategies for Contaminated Civilian and Military Sites in the Arctic Far North", Kirkenes, Norway, 24-28 June 1996.
- 3 Penzin, R.A., Sheptunov, V.S., Lesohin, B.M., Bulygin, B.K., Shvedov, A.A., "The Development of a Modular Plant for Processing Liquid Radioactive Wastes from the Nuclear Fleet: Korvet Project", Proceedings from the NATO Advanced Research Workshop "Recycling, Remediation, and Restoration Strategies for Contaminated Civilian and Military Sites in the Arctic Far North", Kirkenes, Norway, 24-28 June 1996.
- 4 Record of Discussion, "Meeting on AMEC PROJECT 1.2", St. Petersburg, Russia, 3-5 November 1999.
- 5 Report, "Implementation of Mobile Pretreatment Facility for Reprocessing of Liquid Radioactive Waste with Complex Physical and Chemical Composition", ICC Nuclide, St. Petersburg, Russia.
- 6 Record of Discussion, "The PROTOCOL of technical meeting under the question of creation, "Infrastructure of spent nuclear fuel unloading from the nuclear submarine with ballistic missiles reactors", at the FSUE MBE "Zvyozdochka", 29 May, 2000.".