METAL ANTIMONATES – HIGHLY EFFECTIVE ION EXCHANGERS FOR RADIONUCLIDE REMOVAL FROM ACIDIC AND NEUTRAL WASTE SOLUTIONS R. Harjula, T. Möller, A. Paajanen, K. Vaaramaa, P. Kelokaski, P. Karhu and J. Lehto Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki PO Box 55, FIN-00014 UNIVERSITY OF HELSINKI, FINLAND M. Webb and S. Ward CROSFIELD Ltd., Warrington, UK S. Amin BNFL, Risley, Warrington, UK #### **ABSTRACT** Several metal antimonates MSbO (M = Si, Ti, Mn, Sn) have been studied for the removal of several key radionuclides (⁶⁰Co, ⁹⁰Sr and ¹³⁷Cs) from nuclear waste solutions. Special emphasis was the removal of radionuclides from acidic effluents and from effluents of high Ca content. Synthesis and initial screening test indicated that increasing the degree of substitution of other metals (M) for Sb increases the uptake of divalent cations (Sr, Co) in acidic media. Some of the synthesised compounds also showed considerable tolerance for Ca ions in Sr removal. Column tests with granular silicon antimonate gave very good decontamination factors (DF) for ⁸⁵Sr (DF up to 10000) and ¹³⁴Cs (DF up to 600) in nitric acid solution (0.1 M) and for ⁵⁷Co (up to 5000) ⁸⁵Sr (up to 3000) in neutral simulated pond water. Precoat tests with manganese antimonate powder gave high decontamination factors for ⁵⁷Co (DF up to 600) in simulated NPP floor drain water. In general, the performance of the metal antimonates was considerably better than that of commercial materials (zeolite, titanate, and silicotitanate) that were tested in parallel for reference. ## **INTRODUCTION** Due to their high selectivity and radiation stability, inorganic ion exchangers lend themselves ideally for the treatment of nuclear waste effluents. A good number of effective inorganic exchangers are commercially available today. Natural and synthetic zeolites are used in several nuclear power plants for the removal of ¹³⁷Cs from low-salt effluents. In high- and medium-salt effluents more selective medias are used. These include different titanium oxide-based compounds (removal of ⁹⁰Sr and TRU-nuclides), silicotitanates (removal of ⁹⁰Sr and ¹³⁷Cs) and hexacyanoferrate compounds (removal of ¹³⁷Cs)(1-5). However, the water chemistry often limits the use of highly selective inorganic medias. A major challenge is the removal of ⁹⁰Sr from acidic or mildly acidic liquids, since the materials that are selective for ⁹⁰Sr are weakly acidic in nature and do not thus perform efficiently below pH = 5. Commercially available materials have practically no ⁹⁰Sr uptake in acidic medium (Table I). Another challenge is the removal of ⁹⁰Sr from Ca-bearing waste liquids since Ca ions usually interfere strongly with Sr uptake. Considerable research has been carried out by the authors to study and develop acidic inorganic ion exchangers for the removal of ⁹⁰Sr and other key radionuclides from nuclear waste effluents. Several promising groups of compounds have been identified and developed. These include titanium antimonates, which take up efficiently several important radionuclides present in nuclear wastes (Table I). In addition, these compounds tolerate considerable levels of Ca ions in the solution. Tungsten-doped silicon antimonates (6) show even higher radionuclide uptakes, but their Ca-tolerance is somewhat lower than that of titanium antimonate compounds. This paper describes some initial screening test results that have been obtained with the metal antimonate materials. In addition, recent dynamic column and precoat test results with simulated waste liquids are presented. #### **EXPERIMENTAL** #### **Materials And Batch Tests** The metal antimonates $M_X Sb_Y O_Z x$ w $H_2 O$ (M=Si, W, Ti, Mn, Sb) of varying M/Sb- ratio (10-0.1) were synthesised by proprietary methods at the Laboratory of Radiochemistry (Finland) and at Crosfield Ltd. (UK). The synthesised products were first introduced to initial screening tests, which comprised the determination of radionuclide distribution coefficients (k_d) in 0.1 M HNO₃ and 0.01 M Ca(NO₃)₂ solutions: a sample of ion exchanger (in H⁺-form or Ca²⁺-form, m = 0.050-0.070 g) was contacted for three days with the solution (7-50 mL) traced simultaneously with 57 Co, 85 Sr and 134 Cs, after which the solution was centrifuged, filtered (0.2 um) and analysed for the radionuclide activities using a Canberra Ge-detector and multichannel analyser (DSA 2000) and Genie2000 software. Some commercial ion exchangers, i.e. silicotitanate CST (UOP, USA), titanate (Selion Oy, Finland) and clinoptilolite zeolite (BNFL) were tested in parallel for reference. The k_d -values were calculated using the formula: $$k_d = \frac{\overline{A}}{A} = \frac{A_0 - A V}{A m}$$ (Eq. 1) where \overline{A} is the equilibrium radionuclide acvtivity concentration in the exchanger (Bq/g) and A_0 and A are the initial and equilibrium activity concentrations in the solution Bq/mL, respectively. The ratio V/m is that of solution volume (mL) to exchanger mass (g). The radionuclide k_d -values may be used to estimate the total processing capacity, in terms of solution volume (L) that can be purified with unit mass of ion exchanger (kg) under the conditions that prevail in the test. The k_d -value can also be used to measure the selectivity of the ion exchanger relative to the exchanging counter-ion B (charge z_B), i.e. $$k_{A/B} = \frac{\left[\overline{A}\right]^{Z_B} \left[B\right]^{Z_A}}{\left[A\right]^{Z_B} \left[\overline{B}\right]^{Z_A}} = k_d^{Z_B} \frac{\left[B\right]^{Z_A}}{\left[\overline{B}\right]^{Z_A}}$$ (Eq. 2) where [B] and $[\overline{B}]$ are the concentrations of counter-ion B in solution and in the ion exchanger, respectively. Based on the initial screening test results, selected samples were tested further by determining the radionuclide distribution coefficients as a function of pH. These experiments were carried out by batch titration of the H-form exchangers with NaOH in NaNO₃ solutions (concentration 0.01-1 M) that were traced with a radio nuclide ion. After a three-day contact time the solution was centrifuged, filtered and analysed for the radionuclide activity and pH. The k_d value was calculated as before (Eq. 1). ## **Dynamic Tests** Most promising materials were submitted to dynamic column and precoat tests. Column tests were carried out using small-scale (bed volume BV = 0.5 cm^3) columns packed with granular (0.30-0.15 mm) ion exchange material. Two types of simulated waste solution were used, 0.1 M HNO₃ solution and a simulated pond water (Na 100 ppm, Ca 1.5 ppm, Mg 0.7 ppm), which were traced with 57 Co, 85 Sr and 134 Cs with an activity level of 10000 Bq/L. The traced solutions (radionuclide activity A₀) were pumped through the columns at a flow rate of 10 mL/h (20 BV/h) and fractions were collected from the outlet for the determination of outlet activity A. The decontamination factors for the radionuclides were calculated as DF = A₀/A. Precoat tests were carried out using a planar Millipore filter unit (Fig. 1) housing a 92 mm diameter filter membrane (filtration area 125 cm²). The ion exchanger (m = 8-10 g, grain size < 0.15 mm) was slurried in water in a packing cylinder that was placed on top of the membrane. After the ion exchange material was settled on the membrane by the aid of suction, the top lid of the filter unit was closed. The feed solutions simulated NPP Floor Drain waters and contained a constant amount of Na (100 ppm) and varying amounts of Ca (0.5-25 ppm) were used in the precoat tests. Solution was circulated through the filter unit via a stirred 60-L feed tank. Concentrated solutions of radioactive tracer ions (¹³⁴Cs or ⁵⁷Co) were fed continuously into the feed tank to replenish the radioactivity taken up by the precoat filter and to keep the radioactive feed level approximately constant at 100 Bg/L. Feed solution flow rate was maintained at 0.3-0.6 L/h, which corresponds 1800-3600 exchanger "bed" or mass volumes per hour. Because of high throughput rate, the activity in the 60-L feed tank had to be kept low at the 100 Bg/L to avoid excessive build-up of radioactivity in the filter unit. In order to study the effect of feed activity on the precoat performance, the filter was fed for short periods using smaller feed vessel of much higher activity levels (10,000 - 100,000 Bg/L). The radionuclide activities were analyzed in the feed solution (A_0) and in the filter outlet solution (A), and the decontamination factor for the radionuclides was calculated as $DF = A_0/A$. Fig. 1. The Millipore filter unit used in the precoat tests. #### **RESULTS AND DISCUSSION** ### **Initial Screening Tests** Many of the tested metal antimonates took up efficiently ⁵⁷Co, ⁸⁵Sr and ¹³⁴Cs from acidic solution (Table I). Uptake of ⁵⁷Co and 85Sr in titanium antimonates increased with the increasing amount of Sb (ratio M/Sb decreases) in the compound, while ¹³⁴Cs uptake had a maximum when the Ti/Sb-ratio was 0.5-1.0. The manganese antimonates and tungsten doped silicon antimonates (W-Si_XSb_YO_Z) behaved similarly, except that the latter group of materials had a high uptake for ¹³⁴Cs and ⁸⁵Sr over a broader M/Sb-ratio than the titanium or manganese antimonates. The level of ¹³⁴Cs uptake was also somewhat higher in the W-doped silicon antimonates than in the other metal antimonates. This was a specific effect of doping tungsten into the silicon antimonate compound. Commercial Sr-selective Na-titanate exchanger did not work in the acid test solution (Table I.). Silicotitanate, which is known to be selective for both Cs and Sr, did not take up any ⁸⁵Sr, or ⁵⁷Co, from the acid solution. However, uptake of ¹³⁴Cs from the acid solution by CST was rather effective. Table I. A selection of screening test results: radionuclide distribution coefficients for metal antimonates $(M_XSb_YO_Z)$ in 0.1 M HNO₃. | lon | Exchanger | k _d (L/kg) | | | | |--------------------|-----------|-----------------------|----------|--------|--| | M | M/Sb | Cs-134 | Sr-85 | Co-57 | | | Ti | 3.9 | 230 | 7 | 2 | | | | 1.2 | 41 000 | 370 | 3 500 | | | | 0.9 | 69 000 | 1 500 | 8 500 | | | | 0.6 | 76000 | 45 000 | 14 000 | | | | 0.19 | 5200 | 168 000 | 47300 | | | Si, W | 1.73 | 182000 | 1720000 | 14500 | | | | 0.76 | 110000 | 7570000 | 75000 | | | | 0.25 | 270000 | 6500000 | 2700 | | | Mn | 2 | 440 | 4100 | 5600 | | | | 1 | 19000 | 580000 | 22000 | | | | 0.65 | 65000 | 7100000 | 5800 | | | | 0.2 | 48000 | 11000000 | 4000 | | | Na-titanate | | 0 | 4 | 5 | | | Silicotitanate CST | | 51 500 | 10 | 0.2 | | The new metal antimonates had a reasonable uptake of ^{85}Sr from 0.01 M Ca(NO₃)₂ solution (Table II). It can be estimated using Eq. 2. that the selectivity coefficients $k_{Sr/Ca}$ between Sr and Ca were in the range of 14-82. Na-titanate had no specific selectivity for Sr over Ca ($k_{Sr/Ca}\approx 1$) while CST had a similar Sr/Ca selectivity ($k_{Sr/Ca}=47$) as the best metal antimonate materials. Table II. A selection of screening tests results: 85 Sr distribution coefficients k_d (Eq. 1) and Sr/Ca selectivity coefficients $k_{Sr/Ca}$ (Eq. 2) for metal antimonates ($M_XSb_YO_Z$) determined in 0.01 M Ca(NO_3)₃ solution. | Ion Exchanger | | K _d (L/kg) | K _{Sr/Ca} | | | |--------------------|------|-----------------------|--------------------|-------|----| | М | M/Sb | | Sr-85 | Sr-85 | | | Ti | | 1.2 | 8200 | | 82 | | | | 0.9 | 6 100 | | 61 | | | | 0.6 | 3 300 | | 33 | | Si, W | | 1.73 | n.d. | | | | | | 0.76 | 2360 | | 24 | | Mn | | 1 | 3000 | | 30 | | | | 0.65 | 1400 | | 14 | | Na-titanate | | 200 | | 1 | | | Silicotitanate CST | | 7000 | | 47 | | ## Effect Of pH On Radionuclide Uptake Regarding ⁸⁵Sr, the general trend for titanium antimonates was that the uptake in acidic solution increased as the proportion of antimony in the compound increased (Fig. 2). The uptake curves crossed over in neutral pH range so that some of the high-Sb products had somewhat lower uptake than the low-Sb compounds in neutral and slightly alkaline solution. For ⁵⁷Co and ¹³⁴Cs uptake, there was no steady increase in the uptake with increasing Sb content, but the uptake had a maximum at about Ti/Sb =1-2. The behaviour of ⁸⁵Sr uptake was similar in the silicon and manganese antimonates, but the maxima of the ⁵⁷Co and ¹³⁴Cs uptakes was not as strong as in titanium antimonates. The uptake of ⁸⁵Sr in Na-titanate (Fig. 2) and CST (not illustrated) was similar to that of low-Sb metal antimonates; i.e. the uptake was low in the acidic solution. Fig. 2. Distribution coefficient k_d of ⁸⁵Sr for titanium antimonates of different Ti/Sb-ratio as a function of pH in 0.1 M NaNO₃. Data for Na-titanate shown for comparison. #### **Column Tests** Column experiments have been carried out using a granular W-doped silicon antimonate compound (WSiSb, Si/Sb = 0.76). This material removes efficiently both ⁸⁵Sr (DF up to 1000) and ¹³⁴Cs (DF up to 600) from HNO₃ solution (Fig. 3). Also the processing capacity is high for ¹³⁴Cs and ⁸⁵Sr, the column had considerable capacity left when the test was terminated at about 17000 BV. The level of ⁵⁷Co removal was only about 50 % (DF \approx 2) most of the time and the ⁵⁷Co-capacity was exhausted at about 8000 BV, which is rather unexpected considering the relatively high k_d -value (Table I). This data indicate that the kinetics of ⁵⁷Co exchange in WSiSb is very low. In neutral simulated pond water, the removal efficiency of WSiSb for 85 Sr was again very high (DF up to 3000). Also 57 Co is removed with a high efficiency (DF up to 5000) but 134 Cs was taken up with reasonable efficiency (DF > 10) only during the early stages of the column run. The capacity for 134 Cs was exhausted at about 3000 BV, while 85 Sr and 57 Co were still taken up when the test was terminated at 17000 BV. The removal efficiency of WSiSb for 57 Co and 85 Sr was considerably better than that of clinoptilolite zeolite (Fig. 4). Fig. 3. Column decontamination factors DF of 57 Co, 85 Sr and 134 Cs for W-doped silicon antimonate (Si/Sb = 0.76, see Table I) and for a titanate (85 Sr) in 0.1 M HNO₃-solution. Radionuclide feed activities 10 kBq/L. Fig. 4. Column decontamination factors DF of 57 Co, 85 Sr and 134 Cs for W-doped silicon antimonate (Si/Sb = 0.76, see Table I) and clinoptilolite zeolite in simulated pond water (Na 100 ppm, Ca 1.5 ppm, Mg 0.7 ppm). Radionuclide feed activities 10 kBq/L. #### **Precoat Tests** First precoat experiments were carried out using a powder of manganese antimonate (Mn/Sb = 10) and a simulated NPP Floor Drain Water (Na 100ppm, Ca 0.5 –25 ppm) spiked with ⁵⁷Co and ¹³⁴Cs (50-10000 Bq/L). The experiment was started using a solution with 0.5 ppm Ca content and a ⁵⁷Co feed activity of about 50 Bg/L. The observed DF for ⁵⁷Co was about 10 under these circumstances (Fig. 6). When the ⁵⁷Co feed activity was increased to about 10000 Bg/l, the DF's increased considerably to about 500. Similar strong dependence of DF on the feed activity has been observed earlier in the precoat tests of CsTreat and CoTreat ion exchange medias (4). Increasing the Ca content in the feed stepwise first to 5 ppm and then to 25 ppm (⁵⁷Co feed activity about 10000 Bq/L) did not decrease the DF noticeably, but the DF remained in a high level (400-600). At this stage 100 L of solution had been processed. The test was continued using the low ⁵⁷Co feed level of about 50 Bq/l and 0.5 ppm Ca level and the DF's decreased again to about 10 and remained at this level till the test was terminated at 530 L. The processing capacity was thus at least 77500 L/kg (exchanger dose 7 g) even though the solution contained considerable amount of Ca, which usually decreases strongly the uptake of divalent radionuclides in ion exchangers. Further experiments are underway using the silicon and titanium antimonate materials. Fig. 5. Decontamination factor DF for 57 Co as a function of 57 Co feed activity in precoat test of manganese antimonate (Mn/Sb = 10). #### **CONCLUSIONS** The new metal antimonate compounds show great promise for the removal of ⁹⁰Sr and several other key radionuclides from acidic and neutral waste liquids. Static radionuclide uptakes are considerably higher than those obtained with commercial reference materials. Laboratory scale column experiments indicate that ⁸⁵Sr and ¹³⁴Cs can be removed with high DF from acidic waste with the W-doped silicon antimonate exchanger. This material also removes ⁵⁷Co and ⁸⁵Sr efficiently from neutral pond water simulant. Further work is necessary to evaluate the column performance of other types of metal antimonates. Application of the metal antimonates as powders on filter systems (precoat operation) appears a highly promising technique that allows much higher throughput rates than the conventional column operation. #### REFERENCES - 1. R. HARJULA, J. LEHTO, L. BRODKIN, E. TUSA AND J. RAUTAKALLIO: Treatment Of Nuclear Waste Effluents By Highly Selective Inorganic Ion Exchange Medias, Proceedings of Waste Management '98, Tucson, AZ, March 1-3, 1998. - 2. J. LEHTO AND R. HARJULA: Selective Separation of Radionuclides from Nuclear Waste Solutions with Inorganic Ion Exchangers, Radiochim. Acta, 86(1999)65. - 3. J. LEHTO, L. BRODKIN, R. HARJULA AND E. TUSA: Separation of Radioactive Strontium from Alkaline Nuclear Waste Solutions with Highly Effective Ion Exchanger SrTreat, Nuclear Technology, 127(1999)81. - 4. R. HARJULA, A.PAAJANEN, J. LEHTO, P. YARNELL AND E. TUSA, Pilot scale testing of inorganic ion exchangers for precoat applications, Proceedings of Waste Management 2000, Tucson, AZ, February 27-March 2, 2000. - 5. R. HARJULA, J. LEHTO, L. BRODKIN, E. TUSA, A. KESKINEN, T.MIMORI, K.MIYAJIMA, H. TAJIRI AND H. MIZUBAYASHI, Development of a selective cesium and strontium removal system for the JAERI Tokai-Mura site laboratory tests, Proceedings of Waste Management 2000, Tucson, AZ, February 27-March 2, 2000. - 6. R. HARJULA, T. MÖLLER, S. AMIN, A. DYER, M. PILLINGER, J. NEWTON, E. TUSA AND M. WEBB: Antimony silicate sorbent for removal of metal ions, PCT International Application WO 99/59161, 1999.