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ABSTRACT 
 
A new optimization framework is applied to management of radioactive wastes stored in below-
ground tanks at the US Government’s Hanford, WA, nuclear fuels facility.  Current remediation 
plans call for vitrification of the tank contents.  Blending of the wastes prior to glass formation 
reduces the amount of material required for processing, therefore decreasing disposal costs.  
Uncertainty in the tank contents, the error inherent in the glass property models governing 
vitrification, and computational difficulties, however, render determination of an optimal tank-
blend assignment a challenge to existing optimization techniques.  Previous studies have focused 
exclusively on minimization of processing and disposal costs, ignoring such management-related 
dimensions as the value of reducing select sources of uncertainty.  Moreover, the stochastic 
framework employed by these studies could not guarantee that the glass property requirements 
were met on more than a probabilistic basis.  This paper presents a more flexible, efficient, and 
robust optimization framework that facilitates analysis of the trade-off in reducing select sources 
of uncertainty. Specifically, the prediction error of the glass property models is found to be more 
significant than variation in tank component mass fraction estimates, and constraint violations 
are traced to the need to meet a limited set of glass property characteristics.  
 
INTRODUCTION: OPTIMIZATION AS A POLICY TOOL 
 
This paper describes the application of a new optimization framework to a complex policy 
problem: remediation of high-level radioactive waste stored underground at the US government’s 
Hanford nuclear fuels site.  The use of optimization methods in policy analysis and research, 
while considerable in its potential, has not been fully appreciated in practice.  The multiplicity of 
conflicting objectives and the need to act with incomplete information that characterize situations 
such as Hanford’s combine with the computational and analytical demands of optimization 
techniques to discourage their use.  Yet these tools can play a valuable role even where 
optimization is of secondary importance.  Questions common to waste management, for instance, 
can be profitably framed in an optimization context.  How conservative decision makers should 
be with respect to risks and where limited resources should be allocated in order to reduce 
uncertainty are but two examples.  
 
The optimization framework described here extends the structure of previous assessments to 
examine such questions as they pertain to the Hanford waste remediation effort – dimensions of 
the problem that have been examined only on an ad hoc basis.  The analysis utilizes a more 
flexible, efficient, and robust optimization model that facilitates analysis of the trade-off in 
reducing select sources of uncertainty.  Key findings include identification of error in the glass 
property models governing waste vitrification as a more significant source of uncertainty than 
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imperfect knowledge of the tank contents.  The analysis also isolates those glass property 
characteristics – framed as constraints in the optimization model – to which robustness of the 
vitrification process is most sensitive.  
 
The paper first reviews the larger context of the Hanford waste remediation effort, emphasizing 
the need to find an optimal blend of the stored wastes prior to their immobilization in glass.  A 
brief description of the optimization framework follows.  Results are then presented, and the 
paper concludes with a discussion of the analysis. 
 
HANFORD WASTE MANAGEMENT 
 
The forty year rush to stay ahead of the Soviet Union in the nuclear arms race, coupled with the 
demands of military secrecy during the Cold War, rendered environmental concerns secondary to 
the requirements of national security (1, 2).  The US Department of Energy’s Hanford, WA site is 
one of many government facilities now confronting the emerging effects of this legacy.  Buried 
beneath Hanford are 177 storage tanks, with capacities ranging from 50 thousand to one-million 
gallons, holding waste from nearly two-thirds of the weapons grade nuclear fuel produced in the 
US following World War II (3).  Mixed into this chemical waste is high-level radioactive 
material, including strontium, cesium, and plutonium isotopes – the latter with a half-life of ten-
thousand years. 
 
The short-term focus of the original fuel production did not consider the eventual disposal of its 
concomitant waste materials.  The storage tanks, for instance, were originally built with an 
expected useful life of no more than a few decades, and poor documentation was kept as 
chemicals were added to the tanks, removed for waste management, evaporated to increase 
storage capacity, and juggled from one reservoir to the next (3).  The long-term consequences of 
this situation would not be quite as serious if the waste could be maintained underground 
indefinitely.  Known and suspected leaks, production of volatile hydrogen gas in the tanks, and 
uncertainty about the future of the Hanford site, however, preclude this option (4, 5). 
 
The current – but evolving – remediation strategy consists of a multistage process, beginning 
with characterization and preprocessing of the tank contents, separation of low- and high-level 
radioactive components, and conversion of both waste streams into glass “logs” for permanent 
disposal in a national repository (3, 6).  The blending problem, on which this paper focuses, 
applies to the glass formation process – referred to as “vitrification” – and seeks combinations of 
tank wastes that minimize the amount of glass produced. 
 
OPTIMIZING VITRIFICATION 
 
Selective blending of the tank wastes prior to vitrification reduces the amount of glass produced 
only because the tank contents differ  (7, 8).  A non-homogeneous mixture of gases, liquids, 
slurries, and solids, the tank contents include: salts, organic complexants and their aging 
products, different metals, low- and high-level nuclear waste, and water (3).  In order to convert 
these substances into glass, various oxides (e.g., SiO2, B2O3, Na2O, Li2O, CaO, and MgO) – 
collectively referred to as “frit” – must be added to the waste as it melts. 
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Blending takes advantage of the fact that the frit constituents are present to varying degrees in 
each tank; a selective combination of wastes therefore reduces the need to add frit during 
vitrification by matching tanks with complementary frit requirements (8).  In addition, blending 
decreases the proportion of so-called “limiting” components in the combined waste streams.  The 
presence of these components adversely affects the vitrification process; sodium, for instance, 
reduces glass durability, while aluminum increases both the melt temperature of the material and 
its viscosity (7).  Hence, selective blending of the tank contents increases the probability that 
vitrification will succeed, reduces frit requirements (i.e., achieves a greater waste-to-frit mass 
ratio), and minimizes the volume of glass produced. 
 
Blending involves a two-stage decision process: assignment of individual tanks to a given blend 
and determination of frit requirements.  The latter decision depends on the contents of each tank, 
and is governed by both analytical and empirical glass property models derived for the Hanford 
tank wastes (9, 10).  The resulting constraints pertain to the vitrification process – rather than 
characteristics of the subsequent glass – and include: bounds on the waste component mass 
fractions; crystallinity requirements; solubility limits; and attributes of the molten glass, 
including its viscosity, electrical conductivity, and liquidus temperature (8, 11, 12). 
 
This nested structure is typical of problems in combinatorial optimization, where a number of 
discrete decisions (e.g., the tank-blend assignments) must be made prior to the optimization of 
some function of continuous characteristics (e.g., the frit mass of each blend) – a dependency that 
prevents these decisions from being decoupled (13, 14).  Solution techniques must cycle between 
the discrete and continuous decision levels, until a satisfactory “optimum” is reached.  This 
computational complexity prevents the use of a heuristic, “back of the envelope,” approach; a 
formal optimization strategy is therefore required. 

 
The determination of an optimal set of tank blends is not a trivial task, and – like other problems 
in stochastic optimization – challenges current techniques.  Optimization methods seek to 
minimize (or maximize) the value of an objective function, subject to both equality and 
inequality constraints on its constituent decision variables (see, e.g., 15).  The most general 
optimization procedures restrict analysis to a deterministic set of linear objective and constraint 
equations.  Research has focused on extending these methods to more realistic applications 
involving nonlinear functions of the decision variables, multiple layers of discrete and continuous 
variables, and probabilistic equations. 

 
Models like the blending problem, however, remain difficult to solve in a computationally 
tractable framework without resorting to the excessive use of simplifying assumptions.  Such 
obstacles have rendered traditional mathematical programming techniques ineffective as a means 
of finding an optimal combination of the Hanford tanks.  These include: 
• Difficulty incorporating probabilistic events and parametric uncertainties in a way that 

recognizes their full importance.  In the blending problem, significant uncertainties exist in 
both the contents of each tank and in the prediction error of the empirical glass property 
models. 
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• The tendency to become “trapped” at local minima.  Evaluation of several initial points is 
therefore required to ensure that a “global” solution is found – increasing the computational 
burden. 

• A combinatorial “explosion” of possible solutions.  A subset of 21 of the 177 Hanford tanks, 
for instance, partitioned into three blends of seven tanks each produces 66.5 million tank-
blend combinations. 

• A failure to recognize reduction of uncertainty as an important objective in itself.  Previous 
efforts to address the blending problem (e.g., 8, 11) have focused solely on the cost of 
vitrification (i.e., minimization of frit, which is equivalent to minimizing glass volume, and 
hence, disposal costs).  Significant policy dimensions related to the vitrification process have 
thus been ignored. 

 
A realistic assessment of the Hanford blending problem therefore requires the use of improved 
optimization techniques, especially as they relate to decision making under uncertainty.  The 
framework employed here utilizes a stochastic annealing-nonlinear programming (STA-NLP) 
algorithm; this sequential association of optimization techniques reflects the two-stage decision 
structure typical of problems like Hanford’s tank waste management (14).  The iterative 
optimization process consists of three “loops”: 

• a sampling loop that calculates expected values of the waste component mass fractions from 
empirical distributions of the tank contents; 

• a continuous decision loop (NLP) that uses the mass fraction expected values to determine 
the amount of frit required by a given blend of tanks, subject to a series of glass-property 
constraints; 

• and a discrete decision loop (STA) that selects tank-blend configurations that minimize the 
objective function – the sum of the expected frit mass, its associated sample variance, and 
other terms of interest. 

 
The STA-NLP algorithm cycles through these loops, accepting tank-blend assignments with 
lower values of the objective function until a stopping criteria is met.  The introduction of 
random tank-blend assignments reduces the likelihood of the algorithm coming to rest at a 
“local,” sub-optimal value of its objective.  Compared to previous analyses, the new optimization 
framework is more efficient, reducing processor time on a high-end workstation from days to a 
matter of hours.  For a complete description of the framework’s application to the Hanford 
blending problem, see Johnson and Diwekar (16). 
 
VARIANCE AS AN ATTRIBUTE: THE ANALYSIS OF UNCERTAINTY 
 
Sources of uncertainty in the blending problem have important technical implications and reflect 
significant aspects of the policy-making process surrounding Hanford’s waste management 
efforts.  Expansion of the analytical objective from minimization of frit to include different 
sources of variation therefore represents a novel methodological development.  This section 
illustrates the new optimization framework’s advantages through progressive extensions to the 
blending problem’s objective; the following section discusses the results.  All data is taken from 
Narayan, et al. (8) and Hopkins, et al. (17). 
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Base Objective: Minimization of Frit 
 
A subset of twelve tanks divided evenly into three blends forms the basis of this analysis.  Initial 
remediation efforts at the Hanford site will focus on a limited number of storage tanks; the 
criticality of a tank’s condition (its position on a “watch list”) and the compatibility of its 
contents with the demands of vitrification will govern the selection process (3). 
 
The blending scheme planned for the Hanford tank waste sits on a continuum of strategies 
between vitrification without blending and a “total blend” of all tank materials into one waste 
stream (8).  The total blend alternative, in theory, requires the least amount of frit; the 
impossibility of combining all tank wastes into one batch, however, precludes its use in practice.  
The no-blend and total solutions are of interest nevertheless as they provide bounds against 
which changes in discrete-blend frit requirements may be compared.  A deterministic analysis of 
the blending problem (which replaces the empirical probability distributions of all uncertain 
variables with their modes) yields a further basis for comparison. 

 
Table 1 presents the frit requirements from these preliminary solution schemes, using the base-
case objective: 
 
minimize   {frit mass}         Eq. 1 
 

TABLE 1 -- Frit requirements as determined by basic solution techniques. 
 

Solution Method Required Frit Mass (kg) 

Worst case (no blending) 13410 

Best case (one blend of all tanks) 9839 

Deterministic solution (STA-NLP without sampling) 11161 

Single attribute stochastic solution (STA-NLP with sampling) 10060 

 
Robustness: Minimizing Variance  
The variance in frit requirements, varfrit, is a measure of the robustness of the optimum solution 
and constraint satisfaction.  The magnitude of varfrit, for instance, directly affects the probability 
that the glass property constraints are met when actual  (i.e., sample) values of the waste 
component mass fractions are used in place of their sample means.  Hence, there is a desire to 
keep this source of variation as low as possible.  Including variance as an attribute produces the 
following objective (frit mass here is an expected value, and all terms have been scaled to the 
same order of magnitude): 
 
minimize   frit mass  +  w1 * varfrit        Eq. 2 
 
The number of   constraint violations produced by using waste component mass fraction sample 
values (rather than their means – for which the constraints are always met) provides an indication 
of a particular tank-blend configuration’s feasibility.  Table 2 presents results of a parametric 
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analysis of changes in the priority given to variance minimization relative to frit mass reduction 
(i.e., in w1).  The following sub-section builds on this analysis. 

 
TABLE 2 -- The balance between expected value and variance minimization. 

 

Relative Weight of 
varfrit 

Frit Mass 

(kg) 

√(varfrit) 

(kg) 

% Constraints 
Violated 

0.50 10255 293 11 

1.0 10075 190 6 

2.0 10647 138 2 

4.0 11558 118 0 

 
Reducing Uncertainty 
The ability to incorporate additional variance-related terms into the objective function illustrates 
stochastic optimization’s potential as a policy tool.  Better characterization of the Hanford tank 
wastes and glass property models, for instance, would result in lower frit requirements.  The 
decrease in frit mass that a reduction in uncertainty yields, however, must be weighed against the 
opportunity costs of pursuing other objectives.  The extensions introduced here facilitate this 
analysis: an examination of the trade-offs inherent in allocating scarce resources among research-
oriented activities.  Such extensions are generalizable to similar situations, which are ubiquitous, 
especially in nuclear waste management where the long-lived nature of the waste creates large 
uncertainties. 
 
The analysis rests on a key assumption: that time spent on research increases understanding, and 
therefore decreases variation in quantitative estimates derived from this knowledge.  Research 
activities, however, introduce their own costs and risks; hence, time spent learning and 
experimenting needs to be optimized.  While reducing uncertainty is profitable, the time required 
to achieve a reduction tempers the benefit.  The augmented objective captures this trade-off: 
 
minimize {costs of waste disposal and opportunity costs of reducing uncertainty}  Eq. 3 
 
Processing and disposal costs are once again represented by the expected frit mass and its 
associated variance.  As illustrated below, the sampling variance of the tank waste component 
mass fractions and the uncertainty in the empirical glass property models (through its effect on 
constraint widths) serve as proxies for the opportunity costs of tank waste characterization and 
study of the glass formation process. 
 
The expanded blending objective therefore attempts to minimize frit mass, but – beyond finding 
an optimal tank-blend assignment – balances the extent to which improved waste 
characterization and more accurate glass property models contribute to this goal.  Research 
efforts, for instance, could aim at easing the constraint bounds via improvements in the glass 
property models’ prediction error; as the constraints govern frit requirements, less conservative 
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limits in an optimization framework translate into the need for a smaller safety margin and 
therefore less frit.   Proportional relaxation of the constraints, however, carries an increasing 
penalty: the opportunity costs of related research activities (e.g., tank characterization). 
 
To understand how the augmented blending objective captures this trade-off in mathematical 
terms, note that the type of investigation relevant to the problem will exhibit long-run 
diminishing marginal returns, as uncertainty declines with time spent on research.  For 
characterization of the tank waste components, an exponential relationship between sampling 
variance and time provides an adequate first-order approximation of this dependence: 
 
uncertainty in waste composition  ⇔  varsamp  ∝  exp(-time) 
or            Eq. 4 
time  ∝ -ln(varsamp) 
 
A similar relationship holds for the constraint width term.  Note, however, that the width of the 
constraint bounds varies inversely with the prediction error of the empirical glass property 
models: 
 
time  ∝  -ln(prediction error)  ∝  -ln(constraint width)-1  =   ln(constraint width)  Eq. 5 
 
Once again, the model captures the need to prioritize research objectives by seeking tank-blend 
combinations with larger input sampling variances and prediction errors (i.e., narrower constraint 
bounds).  Excessive values, however, are simultaneously penalized through their detrimental 
effect on the expected frit mass and its associated sample variance.  The optimum reflects a 
balance in this trade-off: a low frit mass and varfrit, with moderate values of varsamp and the 
constraint widths.  Combining these arguments, the augmented blending objective (with all terms 
scaled accordingly) becomes: 
 
minimize   frit mass  +  w1*varfrit  –  w2*ln Σ varsamp +  w3*ln Σconstraint width  Eq. 6 
 
Weights on the terms of equation 6 provide a means of assessing priorities with respect to the 
conflicting goals of decreasing the costs of vitrification and minimizing the opportunity costs of 
reducing uncertainty.  Table 3 presents a qualitative summary of results from such an assessment 
(see Johnson and Diwekar [16] for quantitative details).  Note that tank-blend assignments vary 
depending on the weight of each term in the objective function. 
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TABLE 3 – A qualitative summary of the trade-off in reducing sources of variation. 

 
Focus of Research  

E[frit mass] 

Result 

varfrit 

 

% constraint violations 

Robustness/ minimization of frit 
variance (increase w1) 

Increases Decreases Decreases 

Minimize time devoted to tank 
characterization (increase w2) 

Increases Increases Increases 

Minimize time devoted to improving 
glass property models (increase w3) 

Does not change Decreases Increases 

 
DISCUSSION: THE IMPLICATIONS OF UNCERTAINTY 
 
The results from the previous section have significant implications for the blending problem.  
The importance of attending to matters of robustness, for instance, is apparent in Table 2: as 
reduction in frit variance is emphasized, the proportion of constraint violations decreases to zero 
and the frit masses become clustered more tightly around their mean.  The expected frit mass, 
however, is uniformly higher when reduction of its sample variance is a priority – a compromise 
that illustrates the balance between reducing the volume of immobilized waste and increasing the 
probability that vitrification succeeds.  The augmented optimization algorithm facilitates such an 
analysis. 
 
Beyond providing a framework in which similar trade-offs may be assessed, however, policy 
makers desire answers to specific questions.  Note that the most important question concerning 
the blending problem is not minimization of frit mass, per se; indeed, consideration of the entire 
context of Hanford’s remediation effort and the politics of radioactive waste disposal may 
decrease the priority of reducing frit mass – especially on the order of the savings seen above 
(compare Tables 1 and 2).  More important are questions concerning uncertainty: To what extent 
is imperfect information acceptable, and where should scarce resources be allocated to leverage 
the impact of this narrow part of Hanford’s waste remediation effort on the whole of its strategy?  
Not all sources of uncertainty, after all, are significant.  In pursuing answers to such questions, 
stochastic optimization functions more as an exploratory tool than as a means of providing “one 
best” solution. 
 
The preceding analysis illustrates this capacity.  An examination of the constraints, for instance, 
reveals that the crystallinity requirements are most consistently violated, with the P2O5 solubility 
limit and the component bound on Al2O3 are frequently exceeded as well .  Ideally, more effort 
should be placed on reducing the error in the corresponding glass property models and on 
additional waste pretreatment efforts designed to mitigate the effects of these limiting 
components. 
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Perhaps more significant is the ability to determine which sources of uncertainty need to be 
reduced and which, in contrast, may be tolerated.  The relationship, however, between the sample 
variance and constraint width terms, the frit requirements, and the violation of constraints is 
complicated.  As described, the varsamp and constraint width terms enter the objective function as 
penalties; considered in isolation of their effects on frit mass, larger values of these terms are 
desired.  The “benefit” of greater uncertainty in the tank waste distributions and glass property 
models, however, is balanced by its detrimental effect on the expected frit mass and its variance. 
 
Results from the preceding section illustrate this relationship.  As the weight on the sampling 
variance term increases (i.e., as less weight is placed on characterizing the tank wastes), variation 
in frit mass increases and constraint violations become more numerous.  This effect is not 
surprising: a change in the variance of the waste component sampling distributions leads to a 
proportionate shift in the frit variance – and a similar impact on both the average frit mass and 
extent of constraint violations. 

 
Compared to changes in the weight given to varsamp, however, the variance in frit mass decreases 
while the percentage of constraint violations increases with more liberal constraint widths 
(compare parts (a) and (b) of Figures 1 and 2); greater uncertainty in the glass property models 
translates into narrower constraint bounds, and a smaller range across which frit requirements 
may vary without consequence.  This impact on process robustness leads to the conclusion that 
improvements in the glass property models should take priority over efforts to reduce uncertainty 
in the tank waste composition.  The presence of nonlinearities in the glass property 
models/constraints – which inflate the effects of variance – provides one explanation for the 
pattern of these results. 
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FIGURE 1 -- Distribution of frit masses for different weights on the constraint width 
objective term; (a) w3 = 1.0, (b) w3 = 3.0. 
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FIGURE 2 – Distribution of constraint violations for different weights on the constraint width 
objective term; (a) w3 = 1.0, (b) w3 = 3.0. 

 
CONCLUSIONS 
 
Augmented optimization techniques such as that used in this analysis can facilitate a realistic 
examination of questions pertaining to uncertainty, and incorporate the multiattribute nature of 
the trade-offs that arise when knowledge is incomplete.  Applied to Hanford’s tank waste 
management problem, the predictive error of the glass property models was found to be the most 
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significant source of uncertainty – a prioritizationthat pervious approaches to the blending 
problem could not address.  Not all sources of uncertainty are consequential; the ability to 
distinguish between those sources that are important and those that may be tolerated is therefore 
valuable in a decision-making environment. 
 
In addition, the value of flexibility in an analytical tool was illustrated by the inclusion of 
multiple variance-related terms as objective function attributes – terms representing the 
conflicting sources of uncertainty surrounding waste remediation at Hanford.  Extension of the 
blending objective facilitated a structured evaluation of an important management issue: the 
trade-off between living with uncertainty now versus the value of increasing knowledge.  The 
costs of vitrification in terms of material requirements must be balanced with the need to ensure 
robustness of the glass formation process.  The analysis presented here demonstrated how this 
issue may be addressed in an exploratory manner using optimization techniques – in a situation 
where optimization, per se, is of secondary concern. 
 
Stochastic optimization deserves to be included in the policy analysis toolbox.  The 
computational and algorithmic difficulty of adapting situations like the Hanford tank blending 
problem to an appropriate framework, however, have limited its application.  Further experience 
and development will increase the value of optimization techniques as a means of gaining insight 
into complex problems – includingthose that the growing need to manage hazardous wastes will 
continue to present. 
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