REUTILIZATION AND CONDITIONING OF SPENT SEALED SOURCES FROM NUCLEAR GAUGES

Luiz Carlos Alves Reis * and Paulo Fernando Lavalle Heilbron Filho **

*Centro de Desenvolvimento da Tecnologia Nuclear - CDTN Comissão Nacional de Energia Nuclear - CNEN 30123-970, Belo Horizonte, MG, Brazil

**Superintendência de Licenciamento e Controle - SLC Comissão Nacional de Energia Nuclear - CNEN 22294-900, Rio de Janeiro, RJ, Brazil

ABSTRACT

The increase in use of nuclear gauges in Brazil has resulted in a corresponding increase in the volume of radioactive waste, that must be stored and conditioned for disposal. After being taken out of service, the spent sources are classified as waste and sent to research institutes that are part of the National Commission of Nuclear Energy - CNEN, which are responsible for receiving, storing and conditioning such waste for disposal. CNEN has been intensifying efforts to collect such spent nuclear gauges from the users; in order to minimize the possibility of accidents. As a result of these efforts, a large number of sources are stored at the CNEN institutes.

The management goal for these sources is minimize the waste that must be stored and disposed, through reutilization or a more efficient method of disposal conditioning. The guideline being used is reutilize those sources in which the radioactive material exists as special form radioactive material and that do not exhibit leakage. Nuclear gauges whose sources do not meet these requirements will be dismantled and the sources efficiently conditioned. To dismantle the devices a hot-cell is being implemented at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN. The hot-cell will allow dismantling of ⁶⁰Co nuclear gauges with activities up to 7,4 GBq (200 mCi) and ¹³⁷Cs up to 740 GBq (20 Ci).

This management strategy is expected to reduce the number of 200-L drums of conditioned waste from 92 to 11, when compared with conventional methods of conditioning.

INTRODUCTION

There are a number of different definitions for the term "sealed radiation source". In the IAEA Glossary [1] a sealed source is defined as:

"A source whose structure is such as to prevent, under normal conditions of use, any dispersion of the radioactive material into the environment." A spent radiation source is then a source for which no further use is foreseen.

WM'00 Conference, February 27 – March 2, 2000, Tucson, AZ

Many applications of radiation sources require the activity to be concentrated into as small a volume as possible, usually on order of a cubic centimeter or a few cubic millimeters, which gives the source very small dimensions even though the overall volume is increased by encapsulation [2]. In modern practice the radioactive material inside the encapsulation should be in an insoluble form, for example metal in the case of ⁶⁰Co and ¹⁹²Ir or a ceramic for ¹³⁷Cs and ²⁴¹Am. The material used for encapsulation is usually stainless steel, but sometimes platinum, titanium, or other metals are used. Commercially produced sources are manufactured and tested to internationally agreed upon standards [3,4].

The utilization of nuclear gauges in Brazil has increased in recent years mainly because of the following factors:

- competitive cost when compared with conventional gauges;
- growing presence of multinational companies that are used to using nuclear measurements techniques;
- easy control and measurement of the desired variables such as level, thickness, density, etc;
- absence of contact between the material whose level or density requires measurement and the gauge, avoiding problems of corrosion and abrasion;
- availability and use of high sensitivity detectors, making possible the use of smaller sources.

After being taken out of service, the sources are classified as radioactive waste by their users and sent to the CNEN research institutes, that are responsible to receive, store and, when necessary, condition the waste. Normally, a source is removed from service when its activity has decreased to a value below a preset minimum, when the equipment or the technique used become obsolete or when the equipment is damaged.

Accidents with spent radiation sources have been more severe than those involving sources still in service, because the latter are discovered quickly in opposition to the former. The accidents generally occur due to inadequate handling by unqualified persons, that do not know anything about radioactivity and its effects. Because of this, CNEN has been intensifying its source collection efforts in the sense of picking up spent sources from the users; in order to minimize the possibility of accidents [5].

The management strategy for these sources consists of waste minimization, through the reutilization of the nuclear gauges or a more efficient methodology for conditioning the spent sources. It is intended to reutilize those sources originally classified as special form radioactive material and that do not exhibit leakage. The devices whose sources do not meet these requirements will be dismantled and the sources conditioned efficiently. To dismantle the devices a hot-cell is being implemented at CDTN. Using the hot-cell, it will possible to dismantle ⁶⁰Co nuclear gauges with activities up to 7,4 GBq (200 mCi) and ¹³⁷Cs nuclear gauges with activities up to 740 GBq (20 Ci).

This paper describes the nuclear gauges received at CDTN, located in Belo Horizonte / MG-Brazil. The process that will be used for reutilization of the nuclear gauges and the methodology that will be used for conditioning of the spent sources also are described.

NUCLEAR GAUGES

In Table 1 are briefly described the main applications involving nuclear gauging techniques and typical sources are listed [6].

Technique	Principle	Radiation	Typical Uses	
Transmission Gauges	The source of radiation and the detector are on opposite sides of the sample under investigation. Radiation is transmitted through the sample and the degree of absorption is a direct measure of the thickness or density. The radiation quality and intensity are adjusted to each particular application.	Kr-85 Tl-204 Sr/Y-90 (activities 40 MBq to 40 GBq) Medium	Thickness measurements of plastic, paper, metal sheet, rubbers, textiles, etc. Determination of tobacco content of cigarettes Measurement of dust and pollutant levels on filter paper samples. Monitoring of bulk flow of material on conveyors or in pipes Bone density measurement to diagnose osteoporosis.	
Beta Backscatter Gauge	on the same side of the sample, often with the source incorporated into the face of the detector. The intensity of the radiation backscattered from thin samples gives a	Tl-204 and Sr- 90/Y-90. For point sources the activities usually fall within the range 40-200	Measurement of the thickness of thin samples of paper, plastics, rubber, etc. Determination of the thickness of a coating on a substrate, provided that there is sufficient difference in either the densities or the atomic numbers of the two materials.	

Table 1. Main Applications Involving Nuclear Gauges

Gamma	The source and detector are	Am 241	Thickness determination for
Backscatter	mounted on the same side of		light alloys, glass, plastics,
Gauge	the sample and the intensity	· · ·	rubbers, etc., beyond the range
Guuge	of the scattered radiation is a		of measurement of beta sources
	measure of the sample	-	Measurement of the wall
	thickness or the mean atomic	(1 GBq)	thickness of pipes, tanks,
	number of the material. The	(1 024)	process vessels, etc.
	method is used for the		Measurement of the ash content
	measurement of substances		of coal (the ash increases the
	of low atomic number for		mean atomic number)
	which transmission		Coal sensing probes on
	measurements are not		automatic coal cutting machines.
	sufficiently sensitive.		
	-		
	A low energy photon source	Fe-55	Measurement of the thickness of
X Ray	is used to excite fluorescent	(200-800	plastic coatings on metals
Fluorescence	X rays in either the substrate	MBq)	Measurement of the thickness of
Gauge	or the coating of the material	Tritium (40	metals on other metals where
	under investigation. The	GBq)	there is only a small difference in
	fluorescent X rays from the		atomic number between the
	metal substrate are absorbed	1 /	metals, e.g. tin and zinc on iron,
	as they pass through the		precious metals on copper.
	plastic coating and their	GBq)	
	resultant intensity is a		
	measure of the thickness of		
	the coating.		
DI (T (D 1 ' ' ''
Photon Societations	Gamma rays or X rays are		Packaging monitors, providing
Switching (Level Gauge)	transmitted from one side of		automatic rejection of partially
(Level Gauge)	a container or vessel to a detector mounted on the		filled cans, bottles, etc. Process control of the contents
	opposite side or sometimes	` 1	
	from a source within the		of large vessels, hoppers, etc., e.g. liquids in vessels, coal in
	vessel to a detector on the	```	hoppers
	outside. The intensity of the	- ·	Alignment of pusher and
		(often in the	container on coke ovens.
	detector is dependent upon	•	container on cone ovens.
	the level of the contents of		
	the vessel.	.17	

Selective Gamma Absorption	sample under investigation. The energy of the radiation is chosen so that absorption in the sample is predominantly sensitive to one compound or element	(400 MBq) Fe-55 (800 MBq)	Measurement of sulphur in oils Measurement of lead in petrol Measurement of ash in paper.
Gamma Scattering	When gamma rays from a high-energy gamma source are backscattered from a medium, their intensity gives a measure of the bulk density and porosity of the medium	60,at activities of about 20	
Thermalization of Neutrons	Fast neutrons interacting with the sample medium are slowed down to epithermal or thermal energies by collisions with hydrogen or other light elements in the sample. The intensity of the slowed down neutrons gives a measure of the concentration of these elements.	(1-800 GBq) Cf-252 (0.1	Soil moisture measurements in agriculture and in the construction industry (detection of the hydrogen content of the moisture). Oil prospecting (primarily detection of the hydrogen content of oil deposits). Production control measurement of the moisture content of such materials as wood chips and sintermix coke.
Neutron Transmission		Cf-252 (approx. 10 μg).	Measurement of boron content of detergents, glass, etc. Bulk element analysis in process control, e.g. water, lithium, boron, cadmium Weighing of explosives.

NUCLEAR GAUGES RECEIVED AT CDTN

A database is being implemented in order to facilitate the organization and retrieval of information about nuclear gauges stored at CDTN. Examples of the information being included are [7] :

- radionuclide, activity and date (e.g. ⁶⁰Co, 1 GBq, January 14th 1988);
- physical and chemical form of radionuclide;
- producer of the source;
- source type including dimensions and shape;
- source serial number;
- user of the source including name and address of person knowing details of the equipment i.e. dimensions, material, etc.;
- results of tests which have been done, for example leak tests;
- details of the equipment, i.e. dimensions, material, etc.;
- measured dose rates (at the surface and at 1-m distance from it);
- whether the source was originally conditioned as special form radioactive material;
- working life of the equipment, etc.

The reutilization of nuclear gauges and the conditioning of spent sources will be planned based on this data.

Table 2 summarizes the source radioactivity and number of nuclear gauges received at CDTN until April 30th 1998.

ISOTOPE *	NUMBER OF SOURCES	APPROX.TOTAL ACTIVITY GBq (Ci)
²⁴¹ Am	03	110 (3.0)
⁶⁰ Co	109	40 (1.08)
¹³⁷ Cs	78	3470 (93.8)
⁸⁵ Kr	19	70 (1.9)
²³⁸ Pu, ¹⁴ C, ³ H,	83	80 (2.2)
¹⁴⁷ Pm, ⁶³ Ni, etc.		
Total	292	3770 (102)

 Table 2. Nuclear Gauges Received at CDTN as Radioactive Waste

* Only isotopes with half-life greater than one year

REUTILIZATION OF NUCLEAR GAUGES

It is intended to reutilize only sealed sources containing certified special form radioactive material. Sources received at CDTN with this certification will be wipe tested in a hot-cell. A special Geiger Müller detector for measuring very low level radiation will be used to detect leakage at detection levels, even lower than the established leakage limit in the CNEN-NE-5.01 Standard [8]. If the source does not exhibit leakage and the shutter operation and shielding of the nuclear gauge is intact, it will made available for reuse at a cost savings to the user over the purchase of a new source.

To be classified as special form radioactive material, specimens that comprise or simulate the material will be subjected to an impact test, a percussion test, a bending test, and a heat test [9]. A different specimen may be used for each of the tests. Following each test, a leaching assessment or volumetric leakage test should be performed on the specimen.

CONDITIONING OF SPENT SEALED SOURCES

Conditioning is defined by IAEA [10] as "those operations that produce a waste package suitable for handling, transportation, storage and/or disposal. Conditioning may include the conversion of the waste to a solid waste form, enclosure of the waste in containers and, if necessary, providing an overpack".

IAEA recommends direct conditioning of nuclear gauges containing spent sources in concrete [11]. This typically limits the number of spent sources to be incorporated in a drum to two to four, as shown in Fig. 1.

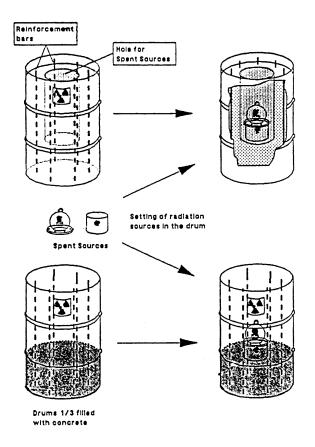


Fig. 1. Conditioning of Spent Sealed Sources in Type A Packages

STANDARDS ASPECTS OF CONDITIONING OF SPENT SEALED SOURCES

In Brazil there are no specific standards related to spent source conditioning. There is a proposed standard "CNEN-NE-6.09 - Acceptance Criteria for Low and Medium Level Radioactive Wastes" [12], that establishes criteria for acceptance of radioactive waste in the future Brazilian Repository. The proposed standard establishes that the final packaging should comply with the National Standard for Transport of Radioactive Material [8] and the Requirements for Safe Disposal.

IAEA recommends that the maximum activity of a package containing beta-gamma isotopes to be disposed by shallow land burial, should be less than 740 GBq (20 Ci) [13].

Transport of dangerous goods is regulated in Brazil by "96044 Decree" of 18/05/88; transport of radioactive materials should also comply with the specific CNEN standard. CNEN radioactivity limits per Type A package are presented in Table 3, where A_1 is the limit of activity if the radionuclide exists as special form radioactive material; and A_2 for other than special form radioactive material [8].

Radionuclide	A ₁ - GBq (Ci)	A ₂ - GBq (Ci)
¹³⁷ Cs	1850 (50)	370 (10)
⁶⁰ Co	370 (10)	370 (10)
192 Ir	740 (20)	370 (10)
²⁴¹ Am	1850 (50)	0,185 (0,005)
²²⁶ Ra	296 (8)	18,5 (0,5)

Table 3. Values of A1 and A2 for More Used Radionuclides

METHODOLOGY FOR CONDITIONING OF SPENT SOURCES AT CDTN

The CDTN guidelines for establishing a methodology for conditioning spent sources are:

- Compliance with the limits of the transport standard;
- Use of Type A packaging;
- Possible retrieval of the sources, if it is necessary;
- Conformance with the maximum activity limit recommended by IAEA for disposal of waste containing beta-gamma radionuclides;
- Low doses of radiation for involved workers;
- Use of a high performance concrete to provide high compressive strength and low permeability [14];
- Implement an immobilization facility if the final safety assessment of disposal, attests to the suitability of the methodology.

The methodology is illustrated in the Figure 2.

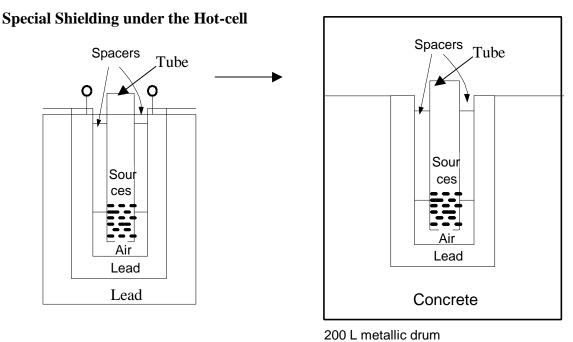


Fig. 2. CDTN Spent Sources Conditioning Process

The methodology, illustrated in Figure 2, includes the following steps:

- 1. dismantle the nuclear gauges in the hot-cell;
- 2. transfer of sources to an air, lead-, and concrete-shielded tube below the hot-cell, until the limit of activity is reached;
- 3. place a top seal on the shielded tube;
- 4. prepare a drum with internal concrete shielding as shown;
- 5. transfer the tube with shielding to the drum below the hot-cell;
- 6. place a concrete cap on the drum, providing shielding and isolation.

At this point the sources will not be immobilized, so as to retrievable if necessary. The final conditioning will only be accomplished after the establishment of the acceptance criteria for radioactive waste in the national repository. If the methodology complies with the criteria, immobilisation would be accomplished as follows:

- 7. remove the concrete cap;
- 8. fill the space around the sources with a metallic alloy with low melting point;
- 9. seal the drum with fresh concrete.

The utilization of metallic alloy in the immobilization process presents the advantage of very low permeability, high mechanical resistance and low corrosiveness since compatible materials are used [15]. In addition, this provides an extra measure of safety for an intrusion scenario.

WM'00 Conference, February 27 – March 2, 2000, Tucson, AZ

Various thicknesses of concrete and lead were evaluated using the software "Microshield", for thickness of air fixed at 2.5 cm. A maximum activity of 74 GBq (2 Ci) of ⁶⁰Co and 370 GBq (20 Ci) of ¹³⁷Cs was assumed - about 5 and 2.5 times lower, respectively, than the transport standard limits. The radiation levels at the external surface of the drum were calculated for filled heights of the tube cavity being 10, 20 and 30 cm. The range of filling heights was chosen to account for variable geometries and the activities of the individual sources, i.e., high activity sources may cause the package radioactivity limit to be reached before the 30 cm available tube cavity is filled. The results are presented in Tables 4 and 5.

Concrete Thickness	Lead Thickness	Estimated Weight of	Radiation Levels at External Surface of Drum (nS v/h)		
(cm)	(cm)	Drum (kg)	10 cm Height	20 cm Height	30 cm
					Height
20.0	3.0	540	13130	11960	10460
18.5	4.5	570	6790	6120	5280
17.0	6.0	610	3480	3100	2640
15.5	7.5	660	1770	1560	1310
14.0	9.0	710	890	780	650

Table 4. Variation of Radiation Level According to Source Filling Height - ⁶⁰Co

The packaging that will be used for conditioning of 60 Co sources will include 14.0- cm -thick-concrete and 9.0 - cm - thick-lead, the most conservative situation (shown in red).

Concrete Thickness	Lead Thickness	Estimated Weight of the	Radiation Levels on the External Surface of the Drum (nS v/h)		
(cm)	(cm)	Drum (kg)	10 cm Height	20 cm Height	30 cm Height
22.0	1.0	510	24940	22630	19690
21.0	2.0	530	11010	9862	8441
20.0	3.0	550	4797	4245	3577
19.0	4.0	575	2070	1810	1503
18.0	5.0	610	887	766	627

As in the case of 60 Co, the most conservative situation is the use of packaging with 18-cm-thick concrete and 5-cm-thick-lead.

HOT-CELL FOR DISMANTLING NUCLEAR GAUGES

A hot-cell is being implemented in order to dismantle nuclear gauges received at CDTN, allowing removal of the radiation sources from their original shielding.

A hot-cell can be defined as a heavily shielded enclosure for handling and processing (by remote means or automatically) or storing highly radioactive materials. The main function of the hot-cell is to allow safe handling of high radiation sources, preventing unacceptable radiation doses to workers and individuals of the public.

The hot-cell that is being implemented at CDTN, is shielded sufficiently for handling of ⁶⁰Co sources up to 7.4 GBq (200 mCi) and ¹³⁷Cs sources up to 740 GBq (20 Ci). The hot-cell include bricks and shot, radiation shielded windows, remote tongs, equipment mounting frames, a dose calibrator, etc. The design is presented in the figure below.

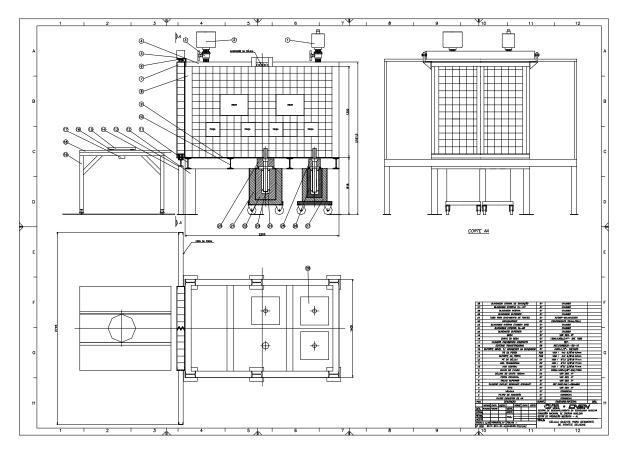


Fig. 3. Hot-cell for Dismantling Nuclear Gauges at CDTN

CONCLUSIONS

The application of the above methodology for conditioning of the existing ¹³⁷Cs sources at CDTN (78 units on 30/04/98) - will result in 8 packages, while the use of the methodology recommended by IAEA would generate about 39 drums (2 sources in each drum).

The conditioning of 109 sources of ⁶⁰Co will produce only one 200 L drum in contrast to the IAEA methodology, which would generate about 27 drums (4 sources in each drum).

The level of radiation on the surface of each drum was calculated with "Microshield". For 74 GBq of 60 Co the estimated radiation level was 0.890 mSv/h and for 370 GBq of 137 Cs the level was 0.887 mSv/h.

The same methodology will be applied for conditioning of other radioisotopes, reducing the number of conditioned drums from about 26 to 2 for these other radioisotopes.

ACKNOWLEDGEMENT

The authors thank Mr. Fernando Pugliese, Mr. Murillo Senne Júnior and all persons who cooperated with this work.

REFERENCES

- 1. INTERNATIONAL ATOMIC ENERGY AGENCY, "Radiation protection glossary". IAEA Safety Series N° 76, Vienna, Austria (1986).
- 2. INTERNATIONAL ATOMIC ENERGY AGENCY, "Nature and magnitude of the problem of spent radiation sources". IAEA Technical Document-TECDOC-620, Vienna (1991).
- 3. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, "Sealed radioactive sources general". International Standard ISO 2919 (1977).
- 4. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, "Sealed radioactive sources classification". International Standard ISO 2919 (1980).
- 5. SALGADO, A. G. ; BRANDÃO, R. O.; XAVIER, A. M., "Operação "arrastão": recolhimento de fontes radioativas consideradas sem mais utilidade". IV Congresso Geral de Energia Nuclear, vol. 2, p. 499-501, Rio de Janeiro (1992).
- 6. INTERNATIONAL ATOMIC ENERGY AGENCY, "Recommendations for the safe use and regulation of radiation sources in industry, medicine, research and teaching". IAEA Safety Series 102, Vienna (1990).
- 7. BÄHR, W. "Handling and conditioning of spent sealed sources", The Management of Spent Radiation Sources, IAEA Lecture 5.9, Belo Horizonte (1992).
- 8. COMISSÃO NACIONAL DE ENERGIA NUCLEAR, "Transporte de materiais radioativos". Norma CNEN-NE-5.01, Rio de Janeiro (1988).
- 9. INTERNATIONAL ATOMIC ENERGY AGENCY, "Regulations for the safe transport of radioactive material". IAEA Safety Standards Series No. ST-1, Vienna (1996).
- 10. INTERNATIONAL ATOMIC ENERGY AGENCY, "RADWASS radioactive waste management glossary". IAEA Safety Series 111-G-1.7, Vienna, Austria (1996).
- 11. INTERNATIONAL ATOMIC ENERGY AGENCY, "Handling, conditioning and disposal of spent sealed sources". IAEA Technical Document -TECDOC-548, Vienna (1990).
- 12. COMISSÃO NACIONAL DE ENERGIA NUCLEAR, "Critérios de aceitação de rejeitos radioativos de baixo e médio níveis de radiação". Norma CNEN-NE-6.09, Rio de Janeiro. (Em elaboração).
- 13. TSYPLENKOV, V., "Waste disposal in shallow land burial". In: The Management of Spent Radiation Sources, IAEA Lecture 6.2, Belo Horizonte (1992).
- 14. FILHO, E.M.A.; ROCHA, S., "Desempenho medido na prática". Téchne Revista de Tecnologia da Construção, Jul./Agosto 97, Ano 5, p. 14-22 (1997).

15. OJOVAN, M.I.; ARUSTAMOV, A.E.; KACHALOV, M.B.; SHIRYAEV, V.V.; SOBOLEV, I.A.; TIMOFEEV, E.M., "Metal matrices for the immobilization of highly radioactive spent sealed radiation sources". Waste Management 98 Symposium, Tucson (1998).