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ABSTRACT

During operation the West Valley Demonstration Project will solidify high level wastes from nuclear
fuel reprocessing using the Slurry-Fed Ceramic Melter (SFCM) process. In order to produce a durable
waste glass within the specified composition range, West Valley must assure consistent operation of the
SFCM process and its feed system. There are a large number of both monitored and controlled variables
in this system. However, there is also a great deal of correlation between variables. This makes the West
Valley SFCM system a logical place to apply Multivariate Statistical Process Control (MSPC) technology.
In contrast to univariate Statistical Process Control (SPC), MSPC takes advantage of the correlation
structure in the process data to assure that the system and its sensors are operating normally, The result
is a system that can detect individual sensor faults and process upsets. This article summarizes the MSPC
technology developed by the Center for Process Analytical Chemistry (CPAC) for application to the West
Valley SFCM system. While some information concerning the workings of the methods is presented, the
articale focuses on the results of the applications. Examples include applications of MSPC to both the

SFCM feed system and the melter itself.

INTRODUCTION

Starting in 1992, West Valley Nuclear Services Co., Inc,
(WVNS) will sohdlfy the wastes from nuclear fuel
reprocessing campaigns performed in the late 1960’s and
early 70’s by Nuclear Fuel Services at a site near Buffalo,
N.Y. The Slurry-Fed Ceramic Melter (SFCM) process will
be used to vitrify a mixture of the original wastes, contami-
nated zeolite and glass forming additives. To date, WVNS
has performed 12 tests of the vitrification system lasting
from a few days to nearly 2 months. These tests employed
a non-radioactive feed that was chemically similar to the
feed expected during actual operations.

WVNS has contracted with the Center for Process
Analytical Chemistry (CPAC) at the University of Washing-
ton to develop Multivariate Statistical Process Control
(MSPC) tools for monitoring the performance of the SFCM
and its feed system. MSPC will be used in addition to other
(conventional) control procedures at West Valley.

The goal of MSPC at West Valley is to help assure
smooth operation of the melter and its feed system. This
goal is addressed in two ways. The first is by providing
measures of the system performance that reduce the num-
ber of variables to be monitored, thus reducing the informa-
tion overload experienced when very large data sets must be
reviewed. The second is by developing methods to detect
any systematic changes to the system or its sensors. Both of
these problems are attacked with Principal Components
Analysis (PCA), and the related technique of Varimax
rotation. These methods are described in the sections that

follow. Examples, taken from the periods of testing at
WYVNS, are given to illustrate the methods.

THE WEST VALLEY FLOWSHEET

A simplified schematic of the West Valley flowsheet is
shown in Fig. 1. The re Proccssing wastes on site initially
consisted of about 2 x 10 liters of alkaline PUREX wastes
and about 3.5 x 10* liters of waste from the reprocessing of
an experimental thorium reactor fuel. The PUREX waste
had separated into a sludge layer consisting primarily of
metal hydroxides, and a supernatant layer of dissolved salts.
Radioactive cesium has been removed from the supernatant
with zeolite molecular sieves. Prior to radioactive startup
the contaminated zeolite will be mixed with the PUREX
sludge, along with the Thorex wastes. During operation of
the vitrification system this mixed waste will be transferred
to a feed makeup tank where the batch will be sampled and
a calculated amount of glass forming materials will be
added. This mixture will then be concentrated and trans-
ferred to the feed tank.

The SFCM is the reference process in the United States
for solidifying the liquid wastes produced during the
reprocessing of nuclear fuels (1). A simple schematic of the
LFCM operated at West Valley is shown in Fig. 2. The
slurry consisting of waste and glass formers is fed onto the
surface of the molten glass pool which is heated by passing
a current between pairs of the three electrodes. Volatiles,
consisting primarily of water and acids, are driven off and
treated in an off-gas system which is not shown. The dried
feed which remains forms a "crust” or "cold cap” which melts
continuously into the glass. Glass is poured periodically
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Fig. 2. Schematic drawing of slurry-fed ceramic melter,

from the melter through a riser section which is also not
shown. This results in periodic fluctuations of the glass
level.

The melter is monitored extensively (2). Temperatures
are monitored at 20 locations within the melter (in the
molten glass pool and above it in the plenum space), and the
resistance and power dissipated between each of the elec-
trode pairs is recorded. Data is also taken on feed flow rate
and glass tank level. In all, 29 variables are recorded. As
might be expected, many of the variables are highly corre-
lated. Methods such as PCA are more appropriate for data
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of this type than methods that assume statistical indepen-
dence of the variables.

The melter data is recorded at 5 minute intervals,
though the process is actually sampled at a much faster rate.
Though 5 minutes may seem long for some chemical pro-
cesses, the SFCM is generally very slow to respond to
setpoint changes or disturbances and so the 5 minute sample
time is appropriate. The process time constant for temper-
ature changes associated with power setpoint changes is on
the order of hours. The glass tank residence time is on the
order of days. Process data is stored on the WVNS VAX
system and can be transferred to CPAC electronically.

THE PCA AND VARIMAX METHODS

Many references are available on the PCA method, so
the mathematical details will be considered only briefly
here. The basic idea behind PCA is that the method finds
combinations of the original variables that describe large
trends in the data. In PCA anm by n data matrix X (where
the rows are samples, the columns are variables and each
variable has been "mean-centered" to produce variables of
zero mean) is decomposed into the sum of the product of n
pairs of vectors (3, 4). Each pair consists of a n by 1 vector
called the loadings, pi, and am by 1 vector referred to as
the scores, ti. Thus X can be written as

X = t1p1T + tzpzT + .+ tnpnT Eq. (1)

The matrix of loadings vectors P forms a new orthogo-
nal basis for the space spanned by X and the individual p;
are the eigenvectors of the covariance matrix of mean-

centered data matrix X, defined as:
convariance (X) = —— (X"%) Eq. (2)
Thus
covariance (X)pi = Aipi Eq.(3)

where A;is the eigenvalue associated with the eigenvec-
tor pi. If the variables in X have been autoscaled (mean-
centered and divided by the standard deviation to produce
variables of zero mean and unit variance) the covariance
matrix becomes the correlation matrix. The loadings vec-
tors p; are referred to as principal components because they
are linear combinations of the original variables that to-
gether explain large fractions of the information in the
original matrix. Each of the the scores vectors t; is simply
the projection of X onto the new basis vector pi:

ti = Xpi Eq. (4)

The value of each 4j is an indicator of the covariance in
the data set in the direction pi. In fact
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% variance in pi = (A/24;) 100 Eq. (5)

PCA is very closely related to the Singular Value De-
composition (SVD) (5) where a data matrix X is decom-
posed as

X = USVF Eq. (6)

where V contains the eigenvectors (pi) and S is a diag-
onal matrix containing the square roots of the eigenvalues
(the singular values) of the covariance matrix of X.

Once the eigenvectors have been determined using
PCA or SVD, projections of the data onto the eigenvectors
can be made. These projections are commonly referred to
as "scores plots" and are often useful for showing the rela-
tionships between the samples (rows) in the data set. Plots
can be done as the projections of the samples onto a single
eigenvector versus sample number (or time) or onto the
plane formed by two eigenvectors. A projection of the
samples onto the two eigenvectors associated with the larg-
est eigenvalues depicts the largest amount of information
about the relationship between the samples that can be
shown in two (linear) dimensions. It is for this reason that
PCA is often used as a pattern recognition and sample
classification technique.

Plots of the coefficients of the eigenvectors themselves,
known as "loadings plots”, show the relationships between
the original variables in the data set. Correlations between
variables show up in the loadings plots.

When PCA is done on a data set it is often found (and
it is generally the objective) that only the first few eigenvec-
tors are associated with systematic variation in the data and
that the remaining eigenvectors are associated with noise.
Noise in this case refers to uncontrolled experimental and
instrumental variations arising from random processes.
PCA models are formed by retaining only the eigenvectors
which are descriptive of systematic variation in the data.
Determination of the proper number of eigenvectors can be
done by cross-validation or other techniques (6, 7). Once
the PCA model is formed new data can be viewed as pro-
jections onto single eigenvectors (scores plots) or the plane
formed by pairs of eigenvectors. The scores can be used to
obtain the "PCA estimate" of a given sample, i.e., the pro-
jection of the sample into the PCA model. For a reduced-
order model Py (where only the first k of the n total
eigenvectors are retained) and a new sample xi this is ob-
tained from:

Xi = tPi" = xPPT Eq. (7)
where ti; is the (1 by k) vector of scores on the model
Py for sample xi.
The "goodness" of fit between new data and the model
can be monitored by calculating the data residual, i.e., the

difference between the actual sample and its PCA estimate.
The residual rj for sample x; is given by

o= x-% = x(- PP Eq.(8)

The magnitude of the residual for any sample x; is

Q = ||ri||=ri"ri= xiT1 - PRT) x; Eq.(9)
While the PCA model is an optimal model in terms of de-
scribing the variance structure in a given data set, it is
often difficult to interpret in terms of the physical signifi-
cance of the individual PC loadings. This is especially
true when all the variables are inherently related to each
other as is the case for composition variables from batch-
ing processes where all components must add up to
100%. In these cases, the PC loadings frequently contain
intermediate loadings for many, or most, of the variables.
From the interpretation standpoint, it is desirable that
each principal component have only a few variables with
high (positive or negative) loadings and that most of the
other variables have zero, or near-zero, loadings.

The method of Varimax rotation consists of iterative
rotations of PC pairs where the rotation operation is se-
lected to maximize the "simplicity” of the PC loading vectors
while retaining the maximum amount of information. This
results in principal components which are much easier to
interpret when applied to the feed composition data. In this
report we will present the results of Varimax rotated PCA
models when discussing feed monitoring applications and
will refer to the Varimax rotated PCs as simply PCs.

SFCM FEED SYSTEM MONITORING

During operation the SFCM feed will be sampled at
least twice during makeup. The first sample is taken after
atransfer is made from the combined wastes in the PUREX
tank. The calculations for the amount and composition of
the glass forming additives are based on this sample. After
addition of the additives the feed mixture is sampled again
to assure that the target compositions have been met. If the
batch is sufficiently close to the target composition, no
further additions are made and the feed is transferred to the
final feed tank. If the feed does not meet specifications, a
"shim" is calculated and added to the feed and the tank is
re-sampled.

Based on this sampling scheme, there are several op-
portunities to apply MSPC to the feed makeup process.
During the experimental phase of the West Valley program
the feed makeup stages of the feed train have been simu-
lated. (It has not, of course, been possible to simulate the
actual drawing of the wastes from the original PUREX
tank.) The MSPC approach has been used to model the
natural variation in the feed makeup process and to catch
systematic deviations in the feed due to changes in the
process or difficulties with the calibration of the instruments
used to monitor the feed. Several examples of this follow.

Figure 3 shows the scores on the first principal compo-
nent from the analysis of the feed composition from the
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SF-9 Sample Scores on First Principal Component
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Fig. 3. Scores on first PC of SF-9 feed model showing systematic variation.

melter trial designated SF-9. (Also shown on the plot are
some feed scores from the previous SF-8 trial.) Here the
score value of each sample is plotted in the order in which
the samples were taken. Thus, the x-axis is proportional to
time. There is evidence here of a systematic variation in the
score value with time. Consideration of the loadings vector
associated with this scores vector showed that the variables
associated with the observed trends were indicative of
changes in the suspended solids content of the feed. Based
on this analysis an investigation was made concerning the
homogeneity of the mixing in the feed tank from which the
samples were taken. It was discovered that when the feed
level in the tank dropped below the top agitator blade the
mixing suffered and some solids tended to drop out of the
feed, resulting in a slightly off-specification composition.
This problem was eliminated very simply by changing the
tank operating procedure so that the feed level was not
allowed to go below the top agitator blade. This trend was
absent in all of the following melter trials.

An example of detection of drifting calibration of the
analytical instruments used to monitor feed composition is
shown in Fig. 4. The figure shows the scores on the third
principal component from the SF-9B run. Here it can be
seen that the sample scores "drifted" away from the normal
region. Based on this analysis, the samples were re-ana-
lyzed at a later date. The result of this is shown in Fig. 5,
which shows that the re-analyzed samples lie in the normal
region. Thus, it was deduced that the cause of the apparent
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change in composition was actually due to instrument cali-
bration drift, as opposed to a change in the feed system.

MSPC charts have also been made to compare the feed
compositions of the different runs. An example of this is the
feed scores from runs SF-10 to SF-12 on the first PC of the
SF-12 model, as shown in Fig. 6. From the figure it can be
seen that the feed composition from many of the earlier runs
was substantially different from the SF-12 feed. This was
primarily due to changes in the desired composition which
was still being finalized as the melter trials proceeded. As
the changes in the desired composition became less signif-
icant the scores "home in" on the SF-12 model. This is also
illustrated in Fig. 7, which shows a 3-d plot of the feed
composition residuals for the earlier runs based on the
SF-12 feed model. It is apparent that the major differences
in the earlier feeds were primarily changes in some minor
constituents of the glass, such as Sr and Ba. Note that this
figure represents a change in relative, not absolute, amounts
of these constituents.

As a final example of the application of MSPC to feed
monitoring, the mean of each of the feed batches from the
separate runs was subtracted out and the results compared
to the SF-12 model. This was done to eliminate the influ-
ence of the largely intentional changes in the feed composi-
tion from run to run so that the variation within runs could
be more clearly observed. The scores of the these "adjusted”
feed samples are shown on the first PC of the SF-12 model
in Fig. 8. Note how the scores from each of the runs become
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SF10-SF12 Feed Scores on SFI12PC# 1

Score Values

Sample Number

Fig. 6. Scores on first PC of SF-12 feed model comparing
previous runs.

largely indistinguishable. This is an indication that the vari-
ation in the feed composition for each run has been approx-
imately the same. In this sense, the feed composition could
be considered to be well "in control.”

MELTER MONITORING

PCA has shown great utility as an MSPC tool for situ-
ations like feed composition monitoring where, under nor-
mal circumstances, the samples can be considered
independent. The utility of the method for monitoring
dynamic processes has also been shown (8-10). Until re-

Fig. 7. Residuals from previous run feeds on SF-12
model.
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Fig. 8. Mean adjusted feed scores on first PC of SF-12
model.

cently, however, a firm theoretical basis for its use with
dynamic process data has been lacking. This basis was been
provided by the CPAC authors of this article (11). This
theoretical development is reviewed briefly here and appli-
cations of the theory to melter monitoring at West Valley
are given.

In order demonstrate the effect of PCA on dynamic
process data, the state-space model format is introduced
here. The state-space form is convenient for modelling
linear, time-invariant (LTI) processes. The discrete form
of the state-space process model (applicable to sampled
data systems) has the form:

x(k+1) = ®x(k) + Tu(k) + v(k) Eq. (10)

y(k) = Cx(k) + Du(k) + e(k) Eq. (11)

Equation (10) is commonly referred to as the state
equation, while equation (11) is the measurement equation.
Assuming that the process has n states, r inputs and p
measurements, then in the state equation x(k) is the (r by
1) vector of state variables at time k, u(k) is the (7by 1) vector
of process inputs at time k, ® is the (n by n) state transition
matrix which determines the effect of the states at time k on
the states at time k + 1, " is the (n by r) input matrix which
determines the effect of the inputs at time k on the states at
time k + 1 and v(k) is the (n by 1) vector of state distur-
bances at time k. In the measurement equation, y(k) is the
(p by 1) vector of process measurements at time k, C is the
(p byn) measurement matrix which describes how the states
relate to the measured outputs, Disthe (p byr) feed through
matrix, which describes the direct effect of the process
inputs on the measured outputs and e(k) is the vector of
measurement noise at time (k). For most processes D is
zero; process inputs rarely have an instantaneous effect on
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the process outputs. The dimension of the state space can
be greater than, less than or equal to the dimension of the
measurement space. Many references concerning the
state-space formalism are available (12, 13).

We have shown previously that, for processes with more
measurements than states, proper application of PCA can
facilitate the process monitoring and fault detection prob-
lem. This is done by identifying a PCA model of the outputs
y(k). Under most circumstances, the PCA model will span
the same space as the C matrix in the corresponding state-
space representation of the process. When the PCA model
is an accurate estimate of C, variations in the process states
x(k) appear primarily as variations in the PCA scores, while
noise e(k) mainly affects the residuals. This allows one to
consider only the noise properties when deriving error-de-
tection limits for the PCA residuals. In particular, the
process dynamics need not be considered explicitly. This
implies that conventional statistical methods that rely on
independence of the samples (such as t- and F-tests and the
multivariate '1‘2) can be applied to the PCA residuals.

The temperature measurements in thé West Valley
SFCM can be treated as a system with more measurements
than states. In all, 20 temperatures are recorded within the
melter, but analysis shows that the dynamics of the melter
are dominated by ~4 states. Thus, a4 PC model can be used
to monitor the SFCM for changes in sensor behavior or
process upsets. In practice, application of PCA to the
SFCM does not produce completely independent residuals
(14), but this is easily compensated for by adjusting the
calculated limits on the residuals to account for the auto-
correlation remaining. Based on this, it is possible to esti-
mate the size of a sensor bias or the amount of additional
sensor noise which will result in the indication of an abnor-
mal event,

These sensor error detection limits are shown for the
each of the SFCM thermocouples in Fig. 9. The size of a
detectable bias error is shown along with the standard
deviation of a detectable added noise error. Note that the
magnitude of the detectable bias or noise is different for
each of the sensors. The detection limits for the thermocou-
ples in the bulk glass (variables 1-6 and 11-16) are quite
small because these variables are very correlated with each
other and do not normally have large variances. Variables
in the cold cap region of the melter (7-9 and 17-19) show
larger limits primarily because these temperatures vary over
a larger range under normal circumstances. The plenum
temperatures (10 and 20) have the largest detection limits
because these two variables are primarily correlated only
with each other and can show wide variation under normal
circumstances.

CONCLUSIONS

This article has demonstrated how the MSPC approach
to process monitoring is being applied at WVNS. The
examples given here demonstrate that the methods are quite
effective for assessing the state of the SFCM and its feed
system. Unusual trends in the feed or process data are
made readily apparent through MSPC. This approach
should be especially fruitful during radioactive operation
when wastes are being withdrawn from the tank farm.
MSPC will provide West Valley a convenient method for
tracking trends in the compostion of the waste so that the
compostion of future batches may be anticipated. Unusual
batches will also be easily detected. MSPC for melter mon-
itoring will help keep the system operating smoothly
through early detection of failing sensors.
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